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J3Abstract

" The object of this note is to study the wave transport characteristics
across a Marx-peaker system. Specifically the Marx generator is situated
parallel to a ground plane with a finite number of peaking-capacitor arms
surrounding it in an electromagnetically optimal manner [1]. . This related
past work [1] also defined and cdmputed a parameter & which is indicative of
the effectiveness of the peaking-capacitor arms in shielding the Marx from the
ground plane. Given this backdrop of information, a coupled transmission-Tine
model is formulated and wave transport characteristics are investigated for
such a Marx-peaker configuration.
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1. Introduction _ . _
 Consider a two-parallel-plate transmission-line type of EMP simulator
which is energized by a Marx generator. If the Marx column is paraliel to a

- ground plane and has the associated NP number of peakihg capacitor arms sur-

rounding it, an electromagnetically optimal way of distributing these peaker
arms was addressed by the authors in [1]. The essense of optimal peaker arm
distribution lies in the requirements that during both charge and discharge cycles,all
the peaker arms be held at the same potential and that they carry equal currents.
[f the Marx column is modelled by an appropriate line current or charge source
that makes the outer periphery of the column an equipotential, then the
equipotential on which the peaker arms are to be distributed is easily chosen

so as to match the characteristic impedance of the transmiSsion-]iné simulator.
Once sdch an equipotential is chosen, the peaker arms are distributed by
reguiring an equal increment of the streém function value between adjacent
peaker arms. This was the basis of optimal peaker distributions in {1], and

the approximations made in this procedure become increasingly valid as NP
increases. We have also defined and computed a parameter & which is indicative
of how well the Marx column is shielded by the NP number of peaker arms from

the groundpliane.

Somewhat related to this subject is another possible way of configuring-
the pulser components viz., Marx column behind the gfound plane at the same
angle as the top plate, peaker arms in the g?ound plane and the output switch
on the wave propagation side. It is also possible to compute an optimal way of
distributing a given set of peaker arms in the ground plane, so that they .
carry approximately equal currents [2] and a parameter & may also be defined
and‘estimated to minimize the coupling of Marx between peakers in the ground
plane into the wave launching section during the charge and discharge cycles.
Of course, this configuration leads to a somewhat different transmission-line
network model, especially if the Marx and peaker arms are of different lengths.
Nevertheless, waveform computations, similar to what is performed in this note,
are possible.

Returning to the present configuration of the Marx column above and
parallel to the ground plane with the peaker arms surrounding it, observe fhat
if Np'is large encugh, then the peaker cage resembles a conducting tubular _
surface and can be modelled as such. We then have an effective conductor
representing all of the peakers on an equipotential surface and the Marx
conductor above a ground plane that is assumed to be perfectly conducting.

-3-




This leads one naturally to a coupled transmission-line model, formulated in
this note. Such a coup1ed t%ansmission-line comprising of two conductors and

a thifd reference conductor, is then useful for studying the wave transport
characteristics across the Marx-peaker system. It is noted that it is adequate
to imﬁress an ideal step function voltage source at the input end for computing
the waveform across the load. The load is the impedance seen into the simulator
which is dominated by the characteristic impedance of the TEM mode propagating
in the transmission 1ine. So, fortunately, the Toad into which the pulser
delivers transient energy is a quantity that is fairly accurately known and it
is mainly purely resistive. Typical values for this load vary in the range of
90 to 150Q. The objectivé here is to evaluate the output voItage'waveform for
a step function input waveform. This study has provided insights into the wave
transport properties, presence of a fast and slow wave in the system ahd is
useful in optimizing the pulser design and generally to launch a desirable wave
onto the simulator plates.




2. Two-Conductor Model of Marx with Peakers

" Consider Np number of peaker arms, each with an effective radius Top -
These peaker arms are optimally distributed [1] around a Marx column of
radius e located at a normalized height of hM, A1l linear dimensions in
the cross section will be normalized with respect to the Marx height. An
example case of NP = 8 (figure 2.1) is reproduced here from [1], showing a
central Marx column with 8 peakers surrounding it in an optimal way. Recall
that all of the NP peaker arms are located on an equipotential Upg which may
be corrected to a slightly different value Up to account for the finite
number of arms emulating a cylindrical surface. The potential (u) and
stream function (v) are the result of a Tine current or charge source above
a ground plane. This i1ine source models the Marx conductor by rendering an
average" circular periphery of the physical Marx column enclosure into an
equipotential surface. The NP = 8 example of figure 2.1 also ensures equal
peaker arm currents avoiding non-uniformities in the electromagnetic fields
in the pulser region. We may designate the Marx voltage and Marx current
as VM and IM' Since all of the peaker arms are at the same potential, this
can be designated as VP and let the tota1 peaker current be I, with the
individual peaker arm currents given simply by IPA = IP/NP. A1l of these
-voltages and currents are in the time domain and are functions of z. The
spectral quantities (two-sided Laplace transformed) are designated by a
tilde over the symbols. |

Implicit in the above characterization of Marx and peaker arms is the
realization that all of the Np arms can be represented by an effective peaker
conductor with a voltage VP and carrying a current IP' This leads one to
a two-conductor (plus reference), coupled transmission-line model for the
Marx-peaker assembly as shown in figure 2.2. It is noted that the Marx and
effective peaker conductors are tied together at both the input and output
ends. This line is excited by a step function driver Vou(t) at the input
and terminated by a purely resistive load ZL at the output end. ZL represents
the characteristic impedance of a single transmission Tine. A per-unit-
length equivalent circuit of the coupied transmission line showing the
jmpedance and admittance per unit length matrices can also be seen in
figure 2.2. These matrices can be evaluated as follows.




“Under the lossless assumpt10n the series impedance matrix (~ (s))
including the LM term, and the shunt admittance matrix (Y‘ ( )) may be

written down in terms of a geometric factor matrix fg ) as
_ n,m
B = sl + (o ) on)|
(Zn,m} =S U'n,m) g Um - Su@ (f ) + (2.1)
t - 1 - -1 : : : . .
(Yn,m) = S(Cn,m) = seo(fgn m) _ — (2.2)
with
f f [ ’ ’
{911 92 _ by |
(f )= £ £ , X E ﬁ;‘ - _ . _'(2.3)

g |
n,m 95,1 922

Note that, all of the above matrices are of dimension (2x2) and that

g g g g | |
1,1 p 2,2 M )

In addition, the parameter § [1] also obeys the relationship

§ =(1-(f_ /f_ Y}or f =f_  =f_ (1-6) ' (2.5)
( gPM gp) gPM gMP gp .

It is now recognized that we have four independent parameters (fg . fg s 8y %),
' p M .

in terms of which the elements of both per-unit-length matrices are computable.

These independent parameters are known as follows [1]

f =
9p
f o
Iy
u.
5 = [] - _._E.
Upg




up = arccsch (rp); rp = rg *Ar

r ' -
. 0 v
..ro = ¢sch (upo);_Ar =‘79 1n(N - 4

n

2ngp

>
It

"
LM/uo

ZP~= peaker cage impedance to ground

ZO = characteristic impedance of the free space medium

The height hM and the various radii appearing in (2.6) are illustrated in
figure 2.1. Also observe that '

oo fgp(l-é))

(fgn,m) =(fgp(];6) ng (2.7)

and therefore

-] ~ 1 ng -fgp(]-é) 2.8
(Fg, o) = &E(F, D) ARUCIEE S - (2.8)

with

_ _ | ) | o

det((f Yy = f[F, - £ (1-6)°] ~f_ [f -f (1-28)](for 8<<1) (2.9)
9n.,m 9" I 9p B I I

Knowing the above four independent parameters, we can write down the elements

of the per-unit-length impedance and admittance matrices, under lossless

assumption, as follows.

Iy =sky = suofgp , '2'2,2? s(Ly o*Ly) = suo(%g;x)\

zi,z = 2'2’] =slj, = suongM = suofqpﬁ-fs)

'?1',1 =50y = slegM/det((fgn,m)) > (2.10)
'?'2,2 =sCp , = seofgp/det((fgn’m))

T, =50, - -Seofgp(1-6)/det((fgn’m)) )




With a knowledge of (Z' ) and ( | ) matrices, we can also formally

wr1te down the character1st1c 1mpedance (Z ) and .admittance matrices
“n,m _ R

-

(Y ), as well as the propagation matrix (;c ) as follows. -

“n,m _ _ _ n,m
~ -~ - -1 ~ -1 ~
(2. Y=(yv, (Y} ={y. ) (2. ) (2.11)
T m Cn.m n,m Cn.m n,m
v 5 -1
(v. Y=+(Z. ) (2.12)
n,m “n,m
" 1/2
(ch,m) = principal value of ((Z ,m) . (Yn,m) (2.13)

Thus, all of the matrices characterizing the coupled transmission-1line model

are known in terms of the four independent parameters fg . fg , & and X.
P M

In concluding this section, it is noted that during the peaker charge
cycle, the Iy = IP (IPAN Y and that immediately after the output switch
closes, the Marx current is small compared to the peaker current. This
characterization of pulser operation indicates the need for two switches
closing at different times to actually represent the Marx pulser operation. {fﬂmﬂ
However, this is not the intent here. The goal being the study of wave e
transport characteristics across the Marx-peaker assembly, the switches _
representing the peaker charge cycle and the discharge following the output
switch closure are not addressed here. On the other hand, the chief benefit
of such modelling 1ies in being able to study the sensitivity of the output
waveforms to parameters like NP and the additional series inductance LM of the
Marx column. This additional inductance Ly = (Lﬁ %) of the Marx column has a
significant effect on the wave transport properties in as much as it Teads to
two waves of propagation viz., the desirable fast wave traveling at the speed
of 1ight ¢ and the undesirable slow wave with a speed- less than c.  The
determination of these velocities and the output voltage waveform VL(t) are
the subjects of later sections. Before we can formulate the expressions for
the output waveform, we need to briefly review the BLT equation [3 and 4] and
specialize its solution to the transmission-line network problem at hand.
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3. Brief Review of General BLT Equation

Consider a generalized transmission line network [3] as exemplified in
figure 3.1. This network is a graph formed by junctions {vertices) and tubes
(branches). The junctions are described as general (linear) N-port networks
which may be distributed as well as lumped. The junctions are also characterized
by scattering (or impedance or admittance) matrices which are functions of
complex frequency s. The tubes are described as general N-wire (plus reference)
transmission lines of various lengths. The numbering scheme of junctions and
tubes and the two waves travelling in opposite directions on each tube is also
shown in the figure. Various matrices can be defined which exhibit the inter-

" connection of junctions and tubes with themselves and with each other.

As developed in [3] and summarized in [4], the BLT equation has the form

L0 ) = (G (1)) © (Fy (), )T @ ((7,(0.5)),)

. (3.1)
= (B p(8))y,0) © (Ui 055Dy, ) @ (g (xos))y)
In this equation there are
((Fn,m(s))u,v) = delay supermatrix ) _ . |
Ny Ny -0 D)0k
= @ (T (s)) = @ e n.m
u=i ™0 UV =t
SCANN O
. n,m _
(1-. (S)) = e foru=1yv
n,m U,V _ -
(On,m)u,v for u # v
(¥, (s)),,, = propagation matrix for u-th N-wave
n,m >
= [(Zﬁ,m(s))u,u (Yr'l’m(s))u’u]]/2 (principal or p.r. value)
_ (3.2)
(2C (s)}u i characteristic impedance matrix for u-th N-wave
n,m ’ ‘
. - - -1 ~
={y. (s)) Yy (s)), .= {y. (s)) - (2, (s))
Coum THY) fn,m Uyl Co.m u,u n,m U,u
(?c (s))u y = characteristic admittance matrix for uth N-wave
n,m i

-




Figure 3.1.

A general transmissiun-line graph showing junctions,

tubes and waves.
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Tongitudinal impedance-per-unit-Tength matrix for uth N-wave

HI

(Z;l,m(s))u,u

(75 m(s))u u - transverse admittance-per-unit-length matrix for uth N-wave
Lu = 1éngth of tube on which the uth N-wave propagates
@ = direc% sum (produces diagonal supermatrix, or block diagoral

matrix)

We also have a supermatrix integral operator

((ﬂ (x,5;(*))) .} = supermatrix integral operator
n,m U,V 7

Ny AT _(ch m(_s))u,u[l'u'xu:l |
C 8 a8 [ o
-~ . (3.3)
u -(ch m(S))u,v[Lu-xu] -
J e ? (+) dxu for u=v
0
(06530 y =
' (Dn,m)u,v for u# v
.
x = coordinate (position) for uth N-wave along tube

(O<>(LI < Lu)

Here (+) designates that the terms following the operator are to be inserted
at the indicated position in the integral{s) with multiplication in the
indicated sense {dot product in this case). Note that this operator operates

over the range of each tube.
The respeonse variables in the BLT equation are contained in the combined

voltage supervector given by

combined voltage supervector (for N-waves propagating

((V (0,8)),) =
into tubes (away from junctions)
= (1%(0,5)) ) + (@, )00 (190,501
((ic (s))u V} = characteristic impedance supermatrix
n,m ?
R PR
= z 3
u=1 Cn,m u>u
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(0 for u # v.

(Z. (s), ., = )
Co.m U,V n,m’ u,v n ] - | ) (3.4)
((?go)(xd,s))u) = voltage supervector for voltages at positions x  along tubes
((TQO)(XU,S))U) = current supervector for currents at positions x, along tubes

with positive current in directions of increasing X,

characteristic admittance supermatrix

o
1%
—r :
-
—
1

} =
Co.m UsV Nw
. ~ _‘I ~ -
=((Z. (s)), ) =@ (¥ (s))
n,m usv u=1 n,m u-4
(?c (s))u s characteristic impedance matrix for uth N-wave
n,m T : ' :
T -1
= (2, (8)), 4

n,m

The source variables in the BLT equation are contained in the combined
voltage-per-unit-length supervector given by

IH

combined voltage-per-unit-iength supervector

(VL (x,8)),)
n {(a source distributed over the tubes)

- () ¢ (e (5D)y,,) @'((Tgio)(xu,x)>u) |
' - (3.5)

-
o
—
——
X
o
in
S
—
S
111

vo1tage-per—unit4]ength supervector (Tongitudinal
voltage source per unit length)

current-per-unit-length supervector {transverse current

>
=
-
w .
—
—
o
~——
11l

source per unit length)

The BLT equation then can take a set of assumed sourcas along the tubes
of a transmission-line network and determine the combined voltages leaving the
junctions., These combined voltages can be converted back to regular voltages
and currents, if desired. First, the combined voltage N-waves entering a tube
can be transformed to any position along that tube via

{s)), . x

~ u,u”u _
(T (o)), = ¢ (7,(0.5)),
Ry (e 51y yIxgxy] (3-6)

+ JO e MU (VL (x!,s)) dx |

Snl.l u
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Now let u and v represent the two N-waves propagating in opposite directions
on a given tube. (See fig. 3.1 for an exampie to see that this is a rather
simple correlation.) Then (3.6) applies to both waves on a particular tube
with ‘ '

T 50, = T x50, = 3 L s, + (T (xosD T (3 )
s, = -0, = 3 G, (), - Liptx9)), - (T 0x,50),]
n,m .
Xty The T Ly

This formalism allows for lumped sources as well as distributed sources
by the introduction of & functions at any particular x, (= L, - x,) of interest.
By interpreting any sources ascribed to the junctions as sources just inside
the tubes (at each Xy = 0+), junction equivalent sources are also handled in
this formalism. S

The above is a statement of the general BLT equation and ah'?HEntification

-of the various terms involving the network description, lumped and/or distributed

source quantities and the response gquantity. This response quantity is a
combined voltage supervector for N-waves propagating into tubes and,éway from
junctﬁons: The combined voltages can be transformed back to the usua]lquantities
of response voitages and currents.

The problem at hand, illustrated in figure 2.2 is of course relatively
simple with only two junctions and a single tube. For this reason, let us
consider the problem of a transmission line network consisting of a sir "2 tube
in the following section, before applying its solution to the problem at hand.
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4. The Form of Time Domain Solution on a Single Tube

One can think of a multiconductor transmission 1ine as one "tube" in a
ceneral network [4]. For the present, let us consider a multiconductor
transmission 1ine with per-unit-length model as shown in figure 4.1. This
figure represents one incremental section of length dz in such a transmission
line. _

The telegrapher's equations for the current and voltage response spectra
‘along the multiconductor transmission Tine are [5] '

LV (2,5) = - (T p(z.9)) - (T (2:9)) + @ 5 (z,5))

dz
- (a.1)
4 (F (z.5) = (T (2.5)) * (0 (z,9)) + (1) (zs))
dz *‘n*™° n,m-? n+=? : n ¥
where
z = position along tube
(Vn(z,s)l = voltage vector at z
_(En(z,s))_z current vector at z
(Z' (z,s)) = per-unit-length series impedance'matrix:
n,m - .
(Y" (z,s)) = per-unit-length shunt admittance matrix
n,em
(?és)-(z,s)) = per-unit-length series voltage source vector
(fés) (z,s)) = per-unit-length shunt current source vector
s = Laplace transform variable (complex frequehcy)'For transform

over time {(t)

For our N-wire transmission line all vectors are of dimension N, and all
matrices are N x N.

Define the propagation matrix

(z,5)) = {(Z} (z,5)) « (T} (2,512 (4.2)
n,m [ ]

where the matrix square root is taken in the principal value or positive

2
¢ )

n,m

real {(p.r.} sense [3] by diagonalizing (v and then taking p.r. square

-16-
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—QO* — ~
—( (2}, n(25)) e > N
(V (z,5)) , , (...
o ils

|
|

> Z

Figure 4.1. Per-unit-length model of a muiticonductor transmission
line forming a single tube.
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roots of the'eigenvalues; From this we also derive

£ _ {o § . (Y1 -1 = (> 1= . (T :
(ch’m(z,S)) = (ch’m(z,S)) (Y, n{2s8)) ((Cn,m(z s)) (Zy, Z’S)?
= characteristic impedance matrix
(4.3)
o 5 ~ -1 3 -1
(Y. (z.s)) = (Y' (z,s)) « {y. (z,s))  ={Z_ _(z,s)) - (v. ({z,s))
Cn,rn LM Cn,m ' ML cn,m .
5 -1
= (Z, (z,s))
a,m
= characteristic admittance matrix
Combined voltage and source vectors are then defined by
(Vplzos))g = (Vy(zas))g +-q(ZCn,m(z,S)) © (I(z,8)) -
4.4)
oL - ls)’ : .l ‘
(Vo™ (zo8)g = (V77 (z,8)), + q(ch m(z,s)) < (177 (z,8))

q = +1 (separation index)

where j_correspdnds to waves propagating in the +z directions.
Now in [3] under the assumption that ( (s)) and (Y'

functions of z (allowing (Z
“n.m

a combined-voltage differentia] equation

m (s)) are not
{s)) to pass through the z der1vat1ve) we obtain

(4.5)

(4.6)

Uy &+l (D1 + (s = (08 @),
n,m
where (?C (s)) is also not a function of z. This is readily solved [6] to
n,m _ _
give (¥, (s)z
~ _ n,m
(3, (z.)), = (7,09,
z -a(Y, (2)[z-2'] '
+ e n,m _ . (Vgs) (z',s))dz'
O .

where without loss of generality we have taken the initial condition as
(V,.(0,s)) but any other z, could be used.

R

- i .
In this paper we consider the case that there are no sources (Vés) ) I

-18-




and (Igs)') along the tube, the ohTy "excitation" coming from conditidns'at-_“
some coordinate we take as z = 0. In this case (4.6) reduces to
i A sz | | - R
(V(zs))g=e 0« (os), | (4.7)

as the solution of the homogeneous form of (4.5). This is a fairly simple
result for propagation along a uniform N-wire transmission line.

The solution in (4.7) above can also be cast in time domain [7 and 8] as
follows. In the absence of distributed sources and if the multiconductor Tine
is uniform, we have at a location z

i -y, )z, o o '

(Vplzps)) = B0 e (V(0:3)), - (4.8)

u!

Also, under the assumption that (Y' ) and (Z' ) are s times constant
) ] n ]

(C'n m) and_(L'n ﬁ], we may define a pair of current and voltage eigenvectors

’ ’ s
(i ) and (v ) of the matrix (L'
c c T on

} « (C' ), resulting in
n n m n,m

k] 2

(e, )~ Tatve) (i) - (6.9)

with B representing the eigenvalue or eigenvector index. ?B are the eigenvalues,
found later for the problem at hand. Substituting (4.9) into (4.8), we have
in frequency domain

~ -;Bzu i ~ .

(V,(z,58)) = [Z e © (v, ) (i ) [-{V(0,8)), (4.10)

u n i
B n B B .

Note that since the modes are eigenmodes of frequency-independent matrices,

they are themselves frequency independent. The above expression in freguency

domain can be Laplace inverted by recognizing that a phase shifted term in
frequency domain corresponds to a translation in the time domain to yield

Z
RIS re,) Ue,) (vato, t-;‘;—)) | (8.11)
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~ Note here that for the modes to be physical time domain quantities, they are.

real-valued vectors, except possibly in cases of equal eigenspeeds. Here,
© we. have '

) e (ig) =1 (biorthonormalized) o B (4.12)

'?B = eigenvalues = (S/VB)’ Vg = eigenspeeds, R = eigenindex.
Note also that the eigenvoltages and eigencurrents are 1nterre1ated via the
_characteristic impedance as given by-

Furthermore, the characteristit impedance and admittance matrices can also-
be written in terms of the eigenmodes as follows.

G ) g 7 )
"4 ?i(vcn)eﬁc")s} | (?'n;m)
] {é_ Y, (vcn)gtncn)8 2y )T
: (?cn’m)" o - AT
- 1] YB(an)B(ucn)g} ()
= {é YB(vcn)s[(icn)B . (vg’m)—1]}

and similarly

~20-
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1]
P

1]

é Yo(Zh o)

In this section, we have formally completed‘anreyiew of obtaining the
time-domain responses for the case of a single tube. - iﬁﬂConCTUding, we
observe that Sections 3 and 4 present a review of the BLT equation for a
generalized transmission line network, and then it is specialized to a

_ network of a single tube in both frequency anditime domainsf In effect

these two review sections present results that can now be applied to the
problem at hand. We start applying the results of Section &4, by considering
the two modes in Section 5.

C-21-




‘5. The Two Modes : | |
The propagation matrix for the coupled transmission-1line model,. under
the lossless assumption is given by,
G

c

n,m

3 vy 1/2
(3 ) - (T 011/

_ - {1/2
Afise € ) ]

1172
0 o) R

oO|n

i ‘ 1172
= (]n,h) +'(0 ° ) ) ?Lﬁ,m)-]

)J1/2 =8 (312 | o (5.1)

slo, e

where (1 o) is an identity matrix and the "errcr® matrix (sﬁ o) due to the

additional Marx inductance is given by

(e )=(° °)-(L' )7
n,m 0 LM n,m

(5.2)
_____J_)_ ( 0 0 )
~ det((L! ) " 'y
nsm ""LM -!’ZLML"’T
Or in terms of the four normalized parameters,
0 ' 0
______ b —_————-
]
(En m -X(]'G) 2 : X 2 (5.3)
i f -f (1-8)°+ f_ -f_ (1-8)
9 9p ' 9 9 '

It is also easily seen that all the elements of (e become zero if there is
no additional Marx inductance.

Next, the two velocities of propagation are given by v, = (c/ffg) for

nym

B =1, 2 where X, and X, are the eigenvalues of ((1_. ) + (en_m)) given by

n,m

-27-




.the two velocities are given by

det (1) ey g Ton) =0 (5.4)
(MS O ) o e T
det = ' : ' : 5.
2,1 ¥ 272 - | | o
which leads to
= ] d . =1+ | =1 + __.!:ﬁ_:]_ i B : (5 6)
Mol oand A=l ¥82r det((L) .)) o
Thus, the two velocities are
C ’ N . : .

[1 . Lyl1, 1 ]
(L1,1L2,274,282,1)

In terms of the previously defined independent parameters (fg ,fg , X and 3},
P M

knowing the four independent parameters from physical and geometrical con-
siderations, it is now a simple matter to evaluate the two velocities using the
above equation. |

Furthermore, with £ being the length of the Marx column (= length of the
peaker), the difference in transit time At for the two waves is therefore

L 4y 9 X /2 ’ |

At = (X221 4 -1] (5.9)

Vo V¢ { f-f (1-5)2}
QM gp

which can also easily be evaluated by knowing the four independent parameters
and the length of the Marx generator.

Observe that one of the velocities is ¢ and the second one is less than
c. They may be associated respectively with a desirable "fast" wave (v1 = ¢c)
and an undesirable "slow" wave (v2 <¢). These two waves are propagating on a
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2 conductdr (plus reference) transmission Tine jllustrated in figure 5.1a. It
is cast in an equivalent transmission-line network graph in figure 5.1b. Observe
that we basically have a single tube T1 consisting of two conductors (Marx \k;/f
and peaker). This tube T] connects the junctions J] and JZ. w=1and w=2 '
corresponds respectively to the waves traveling in the +z and -z directions on
tube Ty. w =3 is the outward wave at'J2 which is also the output wave of
interest. We are interested basically in the voltage waveform associated with
this output wave. The input excitation is considered to be a step function
voltage applied at J1 to both the conductors. '
Next, we turn our attention to the determination of the eigencurrent
and eigenvoltage Vectors. We have already seen that under lossless assumption

(3]

——
<
0
L
[t}
—~
-——
[
: -
-
=

S 1/2
)+ (T )

sty o) v (Cy 12

= S [0, )+ ey )1VE = 2y V2 (5.10)
. Consequently, the eigenvectors are computable from : [/”‘a
(An,m) (Vcn) = ABﬁvcn) a
8 8 (5.11)
(i.) - (a = A (i ) . '
c,'g n,m B¢, .
or '
[y ) = Al )] = (v ) =0 - .
, B | (5.12)
(1)« [l ) = Ag(1, )1 =0 |

ng
We have already evaluated A and Az which are given in terms of the four
independent parameters by, |

A= 1oand A, = |1+ A 5| (5.13)

2
F-f -
M gP(] )

and
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o '—"a.‘
S

Junction.1 o ' Junction 2

v (t)
L

V Q(t) ' Single transmission -
0 (;) line with characteristic

impedance ZL

1P . —~

reference conductor

a) Coupled transmission Tine problem

JUﬁétidn-1 Junction 2
: e —
wave w = 1 wave w=2 wave w = 3
Jq J
. _ 2
l 1
Tube TT Tube T

(consisting of
two conductors)

b) Transmission line network graph

Figure 5.1. The problem at hand cast in the terminology of
a transmission-1ine network.
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0 f 0
________ .,!._._....._—--_.
(An,m) = -X{1-8} ' X > (5.14)
- -5 Fo-f (1-8
ng f 9{1 ) ! Iv gp( )
Using {5.13) and (5.14) in (5.12), we can derive the eigenvectors to be
a) g8=1, AB = A fast wave
() = (i) =720,
_ (5.15)
(v } = (v, ) = c}’z(l, 1-6)
n n .
1 f
b) B =2, Ay = Xy; slow wave
(i) = (i) =g /%(-148, 1)
"2 n g : : (5.16)
(i) = (v ) =g/%0.0
N2 s

where tB are the eigenimpedances. Note that CB does not enter the dyadic

representation of (?c
n,m

et
|

= (1,1-¢8) (1

St
I

(%, ) =3

= (0:1)('1+6:1)

) since

!0)

(5.17)

1(1,1-6)(1,0) + 1,/2(0,1)(-145,1)3

with AZ as in (5.13). HNow; we can find expressions for the eigenimpedances

Cg @s follows
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. _ Imposing "Ohm's Taw" for eigenmodes as in (4.13) for normalization gives

7. Ay o~
(% 3 (v.) ={Z. )} -(G_)
yi c c C
. "g s " ’ (5.18)
£.(1,1-8) = (Z. ) « (1,0)
1 cn,m
5,(0,1) = (Z. )+ (-145,1)
2 Cn,m
Using (4.14) we have for the (vc } mode
"y
e o .
£ (1,1-8) = T 72w, ) ((1 ) . () (1,0))
1 3 lB , 8 o 8 n.m
- E_ - . (T .
= 3 \(1,1 5) (1,0) (Zn,m) {1,0) | (5.19)
-1/2 e L ‘
+ )\2 (0:1) (-'I‘HS,]) (Z;‘,m) (] 90}I
From (2.1) through (2.5) we have for the second term
N (-1+8,1) - (2, )+ (1,0)
e
ff
9  Spm
= SUO("-H"S&]) * f fo+y * (1 :O)
9m M
(5.20)

= S148,1) + (F.,
sug(-1+8,1) { 9 f )
= suf. (-1+8,1) - (1,1-8
= sugfg (148,1) - (1,1-6)
= 0!t

Similarly the first term is
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(190) * (z;‘ ITI) * (1,0)

;]

. | . ; | | /
= sug(1,0) - | F P . (1,0 .o L/
f o f_ +x
9m  SmM | (5.21)
= , . f
sugl1:0) = (fg LFg )
= su f_ (1,0) « (1,1-8)
= suo:fgp
Hence
%1 % Zofg, = Tp | | | (5.22)

which is the impedance of the peaker arms with respect to the ground plane

with no effect of the Marx.
Now consider the siow mode (B=2) in (5.18) for which

2,(0,1) = (I, )+ (-1%8,1) - S (5.23) |
n,m . L

Using (4.14) we have for the (vC ) mode

no2
- ?'1 1 !
gz(o,l).- 1%; (vcn)B( (1Cn)B 2y ) (-1+a,1j) o .
= -S_C; {(]s]"é) (]30) * (Zrl'l,m) * ('.I+6:.I) (5.24)

+ 5120, (-1+8,1) - (2L ) (-1+a,1)!

a2

From (2.1) through (2.5}, we have for the first term

(1,0) = (Z; )+ (-1%5,1)

o (~1+6,1)
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= sug(1,0) » (0, (-1} + fg +X) | (5.25)
9m M | | -
=0l
Similarly the second térm is
(']+6=]) hd (zh,m) * ('1+6:1)
f f
9%  9pmM |
= 5“0(”1+5’]) * f f +Y ¢ ('1+6s])
Ipm M (5.26)

-+69 . ,f 5~ +'F +
suo( 1 1) - (0 gPM(o 1) Iy X}

= e o f (1-s)2
suo{ngM(ﬁ-l) + ng4-x} = Spo{ng + X fgp(1 8§)°}

Hence

_,-1/2 _ 2y
Lo = Xy Zo{ng + X fgp(1 §)°} | (5.22)

Substituting for X, from (5.8), we have

RV 1/2
SR , ) 2 |
- 'gp(] §) } {x . f ng(1 5) } (5.28)

2 = 2o 9y

M

For the problem at hand, we have characterized the two modes in this
section. The eigenvalues, eigenimpedances, eigenvoltage, and eigencurrent
vectors can all be calculated now knowing the four independent parameters

fg s fg , 6 and x. In addition, we require a means of characterizing the two
P M . :

Jjunctions J1 ahd J2 by their scattering matrices. This is the subject of

. Section 6, at the end of which we will be in a position to compute and optimize
' the output waveform.
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6. Junction Characterization _ : .

With reference to figure 5.1b, it is now required to characterize the two
junctions J1 and J2 by their scattering matrices. The scattering matrices |
relate waves scattered from a junction to waves that are inciqent an the

junction. For our problem, we have
(Vn)1 = (Sn’m)1,2 '-(Vn)2 at Jj
(wn)2 = (Sy.m 1 (Vn)] at J, (6.1)
(), = )y 7 W) 28 9

where the left hand sides are the combined voltage waves w = 1, w = 2, and
w = 3 (see figure 6.1) given by combining actual volitages and currents as follows.

_ yl0) (0)
v = (y}*7) + (2 ) - (1
- yl(0) (0}
v = (V - (Z « (I 6.2
( ”)2 (v )1 ( Cn,m)]’] (‘n )1 {(6.2)
_ 0) (0)
(Vn)3.- (Vg )3 * (L, ) - (I )3

n,m 3,3

Note that in the above notation for combined voltages, e.g., {Vn) , the inside
subscript n refers to the wire or conductor and the outside subscript refers

to the wave, w = 1. It is now our object to find the scattering matrices.

a) Junction Jy
It is observed that this junction is relatively a simple one with an -
associated scalar problem resulting in a reflection coefficient of -1.

With
reference to figure 6.1a,
' 0 0 I
2 2/
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P
s

- + V]’_I1
Vzg Iz
- + W=l
———
w=2
| reference
a) Junction 1
Vl’ I1
: w=1 w=3
2* "2 = J
—ZOfL { 95
-
w=2

reference

b} Junction 2

Figure 6.1. Characterization of the two junctions for evaluating the

associated matrices.

-31-




<6 that the junction impedance and admittance matrices are given by"

" _fo o\, /3 fo '
(Zym) = (0 0), Yo.m) —(m w) | (6.4)

and the junction scattering matrix is

(S. ) =-(] 0) . ' | | (6.5).
n.my 2 0 1/, - |

This matrix implies w = 2 wave incident on J1 scatters into the outgoing

w = 1 wave, resulting in the fast and slow wave components of wave w =2
reflecting back into the same components in w = 1 wave with a minus sign as
the only change. So, J] can be characterized by

- - (6.6)

b) Junction J2 .
7 At this junction, w = 1 wave is incident and it scatters into w = 2 wave
and w = 3 wave, according as '

.
W) = (s, ) - =f T R
2 2,1 1 551 S5 .2 1
’ =20 : (6.7)
(Vn)3 = (Sn,m)é : . (Vn)1’= (31,1531’2)3 . f (Vn)]

and we are now required to find the above scattering matrices in (6.7) to
completely characterize this junction Js. These scattering matrices are
obtainable from an application of the junction conditions. One could also
derive interrelationships between the elements of (Sn’m) which simplifies

3

the evaluation of the scattering matrices. The junction conditions at J2 are

voltage on the load = voltage on wire 1

j)'
i1)

i

voltage on wire 2
Z, x current through the load

—

voltage on the load

-

iii) voltage on the load
)

iv) current through the load = sum of currents entering J, on wires 1 and 2

=32




P

The above conditions result in the following equations valid at J2. -

vt =0 = tv =g Vo), | o (6.8a)
i = (0L 0 + () T+ () ‘, (6.8b)
Vy,3 = 01000, 1) Sn,m)2’1] - (V) (6.8¢)
v =7, 1, (6.8¢)
R | | o (6.8e)
L 0 1) . e
el ) L) - ) ] (6.89)

n,m ],]

The above equations representing the conditions on voltages and currents at.
Jo are sufficient to determine the scattering matrix elements. For example,
using (6.8b) and (6.8¢c) in (6.7), we observe

(s

nsm’ 4 (1’0)'((]n,m) + (S,

”’m)2,1) (6.9)

@1y ) *+ S )

T 2,1
Teading to the following interrelationships between the elements of the
scattering matrices. '

{1 * 51,1;2,1}’ $2,152,1 = 31,1:3,1
| (6.10)

=3

(. . _
gt 32,2;2,1}' 51.2:2.1 = %1,2:3,1

So, there are only two independent elements of (Sn W) (either the diagonal
2

or the two off-diagonal) that are required to characterize J2 completely.
These two independent elements are easily determined by the current-conditions
at J, stated in (6.8g), as follows. Note that
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1]
-~ ’

:
- 7 ¥ ) ((v ) - () )
1,153,3 (1 1) “nm g " "2
(e () + ) )= 2 Pl )v((V)-(V))
n.mioA Ny "ol 3,3 0 1) Snm oy g\ " n (6.11)
. 11 i :
[(1, ) +1Z - (Y ) « (V)
n,m ©1,1:3,311 1/ Cn,m 22 Ny
a1 11 3 |
= - | (1 -7 - (Y ) (V. )
B 9,153,300 1 “nom ]] "
Using (6.7), we can recognize ‘
I, o 11 P -t
(s. ) = - | (1 + 7 e (Y ' S G
"M 2,1 M 153,301 1 num N

(6.12)

) 1 L
[Un,m)_-z | P, ) ]

c . § (ol
1,133,341 1 LI

We can compute the scattering matrices from the above equation, ff we know
(VC ), which is evaluated as follows

n,m
vy = ) = (Y
( Cn,m 1.1 Cn,m 2.9 Cn,m)
=3 (i) (i) - (6.13
L) U)o ’
=[c;] (1,0)(1,o)]+[;51(-1+a,1)(~1+}s,1)]
and |
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where
C i : : : 11-1/2
= —1—: - - 2 - - 2}
ey [{ng fg,(1-9) | {x * gy~ oo (19 ;]
Z [ 1 0% -146 1)
r ) =5= + o
n.mt & l(] 0/ (-1+a 1)

fL__ T-at+ad o
T

(6.12) now becomes

(Sndy 1 = [ Oaged * Ean]™ - [Ond = Eonl]

After some straightforward matrix algebhra. we find

! T
: WA IR,
Soum S P e S St Y
ZsT -’9-! ],2 -ZT],] :]+1]’]"T-|,2/

which can be verified to obey (6.10). Consequently, the two independent

elements of the scattering matrices at J2 are given by
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(6.17)
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2T

| | I T | |
S | = ]’2 = 20‘ . ' . . -
+ ad o B

(6.]9)

o o[ T2 )| _2(i-utes)
2,152,1 T\TFTy_1+17 , f

g
1+ '_F—'E') + ad
L

In summary, we have determined the three junction matrices as listed below

|l
1
——
o ——
—
e

(s =
nm,2
S, 1Sy, |
(5,0 - (.-.---.2:.1:_2:1_,%____1:_2_:.2_’_1-) | 0
2,17\ Spq521 71,2520
Saaml, = G2,152,1051,2;2,1)

We now have completely characterized both the junctions J1 and J2 in terms
of their scattering matrices. The elements of the scattering matrix at J]
is simply a negative unity matrix and the elements of the remaining two matrices
are known and calculable in terms of the four independent parameters f p, ng,
X, & and the normalized load fL. We are now in a position to proceed with the
estimation of the output waveform w = 3 in time domain. The procedure for

waveform evaluation is described in the following section.
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7. Waveform Evaluation _ _

In the preceding sections, we have reviewed the BLT equatidn, specialized
its solution to the single tube problem at hand and characterized the two
junctions. We now have all the mathematical quantities required to evaluate
the output waveform. The process of waveform evaluation consist of the |
following steps. This procedure accounts for the initial fast and slow wave
propagation and scattering only. The subject of multiple bounces on the tube
Ty is discussed later.

1. The source Vou(t) is turned on t = 0.

2. Fast and slow waves get launched t = 0t with different amplitudes
(w =1 wave).
3. Fast and slow waves propagate on T1 with speeds v, = c and vy <c,

4. The fast wave arrives at the load at t = tf = (E/v}) = (1/c).

5. Part of the fast wave is transmitted to the load (w = 3 wave) and the remainder
goes back towards the source {w = 2 wave) with both fast and slow wave components.
6. The siow wave arrives at the Toad at t = t_ = 2/v,. '

7. Part of it is‘transmitted to the output (w = 3 wave) and the remainder
goes back towards the source (w = 2 wave) with both sTow and fast wave
components.

Observe also that when the fast or slow wave component of w = 2 traveling
in the -z direction is incident at junction JT’ they turn back with a reflection
coefficient of -1. There is no mixing of siow and fast modes at J,. Fast
mode reflects into fast mode and the slow mode reflects into slow mode with
reflection coefficient of -1. This is in sharp contrast with the mode
transformations at Jz. At J2, fast wave component of w=1 wave is transmitted
in part as a fast wave into the load and aiso converts to fast and slow wave
- traveling back (w=2). A similar transformation occurs for the slow wave
incident on J,. '

Furthermore, the successive incidence of fast and slow waves at J, are
getting smaller each time by the same amount. The evolution of time domain
signals {steps 1 to 7) listed above are pictorially illustrated in figure 7.7.
The successive multiple reflections occur at J, and consequent incidence at do
and transmission to load. The mode launching at successive multiple reflections
discussed above can be illustrated as shown in figure 7.2. This figure shows
the launching of the initial fast and slow waves at J], propagation of these
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. : fast '
T o | —‘L T,

= =

" J] : ’ J2 .- . e
: -+ slow
1. Source turned on at t =-0; Co 2. Launching of the fast

and slow waves at t = 07,

Q O O I ;E '

e | -
: sTow ‘&,- slow
3. Propagation of fast and S 4. Arrival of the fast wave :
slow waves 0 < t < tf. at JZ at t = tf = g/vI = /2.

(fast-fast) <f 1. (fast-fast)

(fast-slow) <= -
| - <.
5. Scattering of the fast wave at 6. Arrival of slow wave at J2
+ - _ .
J2 at t = tf _ at t = tS = ﬁ/v2 assuming

tS < 3tf or v, > c/3.

| C:jr : (stow-fast) <~ T (siow-fast)
— (3

++ (sTow-slow)

-—

7. Scattering of the slow wave at JZ’ t = t;.

Figure 7.1. Evolution of time domain signals.
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waves on T;, scattering at Jz,_reincidence and reflection at Ji and'mu1tip1e-
incidence and scattering at J2. In short, this figure illustrates all possib?e
mode transformations on the tUbe T; (Marx-peaker system) and how signals arrive
at load. Observe that the signal reaching the load is only the fast wave
component, i.e., even when a slow wave scatters at J2, a fast transmitted
component gets to the load. From physical considerations, there is only one
speed of propagation = ¢ on tube T2 representing the transmission line of
charac.zristic impedance, which in turn is represented by the load ZL'

Multiple reflections are not shown in figure 7.1, but they are indicated
in figure 7.2. The initial amplitudes and the various transmission and
reflection coefficients for the fast and slow waves at J1 and J2 are indicated
in figure 7.2. It will be required later to optimize the output waveform, in
which case some of the undesirable coefficients (e.g., rff) can be minimized
or even made to vanish. The various symbols in figure 7.2 are described below

Af = amplitude of the initial fast wave

A_ = amplitude of the initial slow wave

S

res = reflection coefficient of the fast to fast wave at J2 (7;1)
Pes = reflection coefficient of the fast to slow wave at J2

Peg = reflection coefficient of the slow to fast wave at JZ

rss = reflection coefficient of the slow to slow wavé at J2

- Note that at J], siow ahd fast waveé reflect into siow and fast waves
respectively with a minus sign.

% = length of the tube Tj
¢ = speed of the fast wave (7.2)
v, = speed of the slow wave

Cl,Cz = eigenimpedances
The procedure of waveform computation outlined above can now be implemented.
The various steps listed at the beginning of this section are carried out in
the following two sections. The transmission and reflection coefficients at
J, are also derived -and optimized.
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8. Initial Waves _
Observe that initially at Ji(z=0), the combined voitage is given by

C n .
! s 1,1 o (8.1)

= ZVO u{t) (1,1)
and at any general location z, the combined voltage wave w = 1 is given by

(gzey= [0 )« umuguie -2 )
f f
5 [(1Cn)s.(1,1)zv0u(t -%)](Vcn)s_

(8.2)

Furthermore this combined vo1tage can also be written in terms of its fast and
slow components, which are in turn representable by their eigenvoltages as

folliows
vV (z,t)) = (v (V) 8.3
| (v (z ))1 ( n);f *+ “)15 | | (8.3)
L) with - 2

- z I - z )

(). [Ag u(t-2 (vcn)f]—[ﬂ\fﬂ u(t-2)(1,1-9)] »
- - 1/2 '

(V”)1s :[As U(t~§£)(vcn)s]—[ﬁ\sc2 _u(t-%)\(O,l)] - -

Comparing (8.2) and (8.4) we find
" i ’2V0

A =l2v. (i - (1,1)]|=|—
f L 0 1cn)f ) _/E;]

2401, - (D) -ZVOG]
A_ =2V, (i - (1,1 —
L0 e 1l

i

It is seen in the above equations that the factors of 2 on the right side
are present because we are writing down the combined voltages (;rue voltage
+ ZC x true éurrent). Also observe that the fast mode has the full amplitude
and the amplitude of the siow mode is proportional to & as one may expect.
Note that Af and AS when squared have the dimensions of power -and represent
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the excitation coefficients of the fast and slow waves. CTéar]y the firsf
optimization of the output waveform entails making & as small as possibie so
that the slow wave amplitude is minimized. We may how proceed to find the
scattering of fast and slow waves at J2. These are considered in the fol]ow}ng L

two sections.
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9. Scattering of Fast waﬁe'at'Jé _ |
ST We have already noted (see figure 7.1.4). that the fast wave arrives for
,,,,, o the first time at J, when t = t. = %/vy = #/c. Soat t = t; this fast wave
scatters at JZ’ converting to fast transmitted wave into the load, fast
reflected wave and slow reflected wave. We can now determine the expressions
for the various scattered quantities.
A. Transmitted load wave

Voo = (S, ) - (V. )
133 n.m’s 4 ny¢

(51,1512, '[Aff;}/z “(t'%’)(”‘a)]

1/2 2, | |
[31,1;3,1 i 51,2;3,1(1'5)]AfC] u(t -2) (8.1)

and one may define a transmission coefficient T3 1f indicative of fast-fast
scattering into the load at J2 as follows
T :Y.b}.._: S + 5 (1-5) ={s + 5 ~
3,1f 1,153,1 1,2:3,1 T 172,152,1 1,252,]1 (1-6)
Af‘/a . .
: ' (9.2

—_—t

Substituting for the matrix elements from (6.19), we have

S L EAWCANUY
3,1f Af/a; 2VO VO

(9.3)
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It is seen that, we now have a second optimization condition given by -

(fgp/fL? = (1-a8) | : e g ™

which makes Té,lf edua] " to unity which is a highly desirable result. Recall
that o is the ratio of eigenimpedances and equals (:1/52) given in (6.15). We
shall return to the optimization condition above after we gather all of the
primary optimizations.

B. Reflected wave at t = . at J2

When the fast wave is incident on Jz, it reflects back into w = 2 wave
comprising of both fast and slow components which can be computed as follows

v = (V v = (S LV 9.5
() = W)+ () = (Sp ) o (V) (9.5)

The two components of w = 2 wave may be written in terms of eigenvoltage
modes as '

1]

{(V.) E‘Bfu(t-ﬂ,/c)(vC )}

172 .
N'og ‘Bf 4 .u(t—l/c)('l,]-g)l

o ' (9.6) O
(V) s ;‘Bsu(t-z/c)(vcn) l=\ss 0y u(t-z/c)(o,1)‘ -
s
Using the expression for (Vn) | from (8.4}, we have
if
1/2 2 1 .
8.c1/2(1,1-6) + B2y 2(0,1) = Ap y/%(s, ) (1,1-6) | (9.7)

- ' 2,1

We can use the orthogonality property of the eigenmodes to compute the refiection
coefficients defined below

B
- .S
r'ff = Bf/Af ’ rSf = ‘A‘f‘ (9.8) .
First, multiplying (9.7) by (ic } from (5.15) we get
L :
B'F = Af(],O) *® (Sn,m)z 1(191‘6)
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\ /
R

feading to o | -

) (1,1-8)
nsms

> =
-4 |

(1,0) + (S

(S 1,21 S1,252,1)0 = (151-9)

= [31,1;2,1 * (1-8)81 2:2.1 ]

= [" * 52,1520 Y 5,252,078 S22 ]

Substituting for the scattering matrix elements from {6.19), the fast to fast

reflection coefficient ree at dsy becomes

r—~ £ -
Ip
'l -?——-OLG
L
L L .
Similarly, multiplying (9.7) by (ic ) from (5.16) one gets

Ns

5[4 (-146,1) = (S. )« (1,1-8)
r Y U AT + 2 * . . s 1= 6
sf %o | n,m 2.1

| 2
/a (%5-‘ 151,152, S2,152,1 0 0108

" which simplifies to

ree = 55 (S350 * S1.252.0 & S1,201)
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(9.10)

(131“5)
{9.11)

{9.12)




In the interest of waveform optimization we rewrite the transmission and

reflection coefficients at Jz derived above

fgp . e
1-——1_-——-!15
_ L
T3¢ = 1 ¥( 7
9p
1+?—“+0t5
L
f
9p
1 -?r——-aﬁ
_ L .
rff -. -——-—f_-';"— o . . : - . (9.73)
1+ =2 +as
i
— - fg '\ -
1——'£-~0L6
re=va 8|1+ il s
sf ﬁ fg
1+?—P-+O£5
L

We observe from the above that ' _ ' . .

Taue = 1% Ter

§'| g]
( f h
% %1,
S S N
ff i
9% .5
]+f_—+E—_©

Observe that if we made the reflection coefficient rff_(fast to fast) = 0,
then we will have

4

1, — & (9.15)

T3,1¢ °
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which is highly desirable. ree = 0 requires

f . o _

. . | o R
ol S o (9.16)
L 2 o | - S |

which can now be expanded into a polynomial in &.

f s
fgp _ 9p .
T\ 2 2.71/2
[{f Sf (1-6)2 xef. F (1-6) }]
9 9p I9m 9p
=1- f &5 A, 6
9p {i=g !
I 2172 L a2 ]
=1 - A § + 0(8
_1 fgp 0 0(8")
f & _
9p 2
-f +f  -f
ﬁ(ng gP)(x 9 gp)}
Since 8 << 1, to a first order in §, we require
f & ,
fgp 9p '
=1 - 17 o (9.18)
L {(f_-f_ Yx+f -f )}}"" | ,

QM- 9p 9 9

Observe that out of the five parameters, fg s Fg » X, ¢ and fL, we have control
P M

over § and fg and regard the other three fg (Marx impedance normalized to ZG)’
P M

X (additional Marx inductance normalized to Mg = LM/“O) and fL {Toad impedance
normalized to ZO) as given quantities. In other words, for a given set of

X, f, and f,, we need to pick § and fg such that (9.16) or at least (9.18) is

M p
satisfied. This will result in an optimized output waveform in the sense that
the fast wave transmission and its reflection at J2 are optimized.

We can now proceed to scatter the slow wave at J2 and derive a similar
set of optimization conditions.
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10. Scattering of Slow Wave at J2

We have already noted (see figure 7.1) that the slow wave arrives for the
first time at J2 when t = S = R/v2 Soatt = :,
at JZ’ converting to a transmitted wave into the load, fast reflected wave and
slow reflected wave. We can now determine the expressions for the transmitted

this slow wave scatters

and reflected quantities in a manner similar to the scattering of the fast wave
considered in Section 9.
A. Transmitted load wave

V1;3 N (Sn,m)3 1 ) (Vn)-]s
= (5,0 51,20, [A 5,/% ult -%)(‘o,n] (10.1)
- 1/2 e . 2

and one may define a transmission coefficient T3 1s indicative of slow-fast
>
transmission into the load at J, as follows

v

153 - :
T - 3 = 5 . = S . (10.2)
3,1s AT 1,2:3,1 1,2:2,1
s 2 _
Substituting for the matrix elements from (6.10) and (6.19), we have
. T
1:3 2,
T = _12 = S . = ———— e (10.3)
315 T g T Thase o, | |
) ]+?—'+Oﬂ6
L

Furthermore the output voltage from slow wave transmission at J2 is given by

(i) ST P R T Y I
W, T2V 2

V . ~
= 2 L2ps = 67y 2z (10.4)
As/EE ' 9p
1+:F-'"'—+G.(S
L
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25 £ .
B % - + 0(s)
f 7.

9P> 1/2
1++— (F, -f_ Y(O+f - )
( f [ M % M % |

This will natura11y be small from our earlier optimization of & << 1 when we
required that the slow wave excitation be smali. We shall return to this
optimization after we determine the reflected wave at J2'

B. Reflected wave at J2

When the slow wave is incident on J,, it reflects back into w = 2 wave
comprising of both fast and slow components which can be computed as follows

V) = (v + (v = (S, ) (v 10.5
(“)2 (“)2f (")25 B2 ”)15 1e-8)

The two components of w = 2 wave may be written in terms of eigenvoltage modes as

(V) = Coult-2)(v, ) = Cp gy/% ult-35)(1,1-5)

. 2s : 2 n s | ? (10.6)
= AV N 1/2 2

(Vn)Zs =G U(t"VE'(VCn) = Co 2,0 u(t -350(0,1)

) . from (8.4) we have
1s

Using the expression for (Vn

1/2 1/2 a 1/2
Cf 2y (1,1-8) + CS Zo (0,1) = AS 52. (Sn’m)2.1(1,1-6) (10.7)

We can use the orthogonality property of the eigenmodes to compute the reflection
coefficients defined below

Fee = Cf/As » Teg f CS/AS : (10.8)

First, multiplying (10.7) by (ic ) from (5.15) we get
: n
f

_a |2 _
Cf = AS\]—-;]F (1 90) (Sn’m)z '](1:1'6)
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_ f _ 2 L . : _ .
S U - ) SR PO (10.9)
fs A f : : : ;o
| I 9p - L
.|+?'""'- s ' . St
L
L "

In deriving the above, we have reused the simplification of results associated with

(9.9) and (9.10). Once again to minimize r._, we have the same optimization

fs
condition
fg . : _
_ . =P = {1 - ad :
reg = 0 iff fL) ( ) - (10.10)
Similarly, multiplying (10.7) by (ic ) from (5.16) we get
_ n
i ( )« (s ) +(1,1-8)
roo= 2= (<1468,1) « (S o(1,1-8
L33 AS n,m 2.1
— . -
1 -t - o
L ] ,
= 6[1+{—% (10.11)
Ip ' ’ O
I'+?—— + ad . L
L ) Ry

Once again in deriving above, we have used the simplification of results
associated with {9.11) and (9.12). It is noted that the optimization of (10.10)
reduces e to‘é which is a desired result.

We can now summarize the scattering at J2 of the slow wave by the following
three parameters

_ 2o
T3,1s ~ fg
1 +??Ji + od
L
~f a
9p
T-3— - as
L
Peg = Ve 7 (10.12}
9p
1+f——' + b
 — L —
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9p
1-——-8-‘_ o8
kY fL
g Fss = 1+ fg
) .|+?£+Ut.6 i
L L J

In view of the transmission and- reflection coefficients of the fast wave (9.13)
and the slow wave (10.12) that have been dérived, we see two optimizations
that emerge as a matter of consensus. These optimization conditions and the
consequent optimized output waveforms are discussed in Section 11.




11. 0pt1m1zat10n of the Output Waveform

We have determined the transmission and reflection coefficients at J2
for the fast and slow waves in the preceding two sections as exhibited in
(9.13) for the fast wave and in (10.12) for the slow wave. . Examining these
equations, one is lead to the following optimization conditions

§ << 1

(2)-[-)]- o

- If the above optimization conditicns are satisfied, we achieve an optfmizéd

(11.1)

output waveform. The exact and optimized expressions for the various
transmission and reflection coefficients are listed in table 11.1 for ease

of reference. Satisfying the conditions in (11.1) entails.choosing the .proper
value of Np such that ¢ << 1 and then selecting the prbper value for
Zp(=20fgp) such that

i £ g | ]

9p

{Fgm 9P“ 6)2][)(#9-:\4#9;3(]_5)2”1/2

s aaf

The above optimization condition can be cast in terms of a polynomial in

X =[1 - (fg,,/ fL)]

4 .
7 8, x =0 (11.3)
R
with

_ 2 . 2 _ 2 2 2

By = -8, By =-28" , B, = 6-[me-(1-o):|[XL+fL-U 5)]
2 11.4
B3 = -(1-8) [XL+2‘F L 2(1-&)2 : )

4 o= = {v/f

Equation(11.3) can be solved numerically for x. However, an approximate solution
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/—«-.\ .
I3 '
\ ) B

- /!

FAST

SLOW

(]

Note: ik =

2 i

Il e~18

0

fr
(_l) = 0 = optimal value =1 -\7—
0

i
Aié

Optimization required

§ << 1
f

g r
[
L /g 2/y |

Transmission
& reflection

Exact Expressions

Optimized Expreséions

coefficients
Excitation Vo (initial) VO {initial)
Taif THres T
(VL/VO)f 1 + Fes ] . 1
fgp 2 [ fgp 2
Tef F T, 1*7F_'+ET'6 0
L =2 l L 2
./cl 2
Excitation VO § (initial) VO § (initial)
. 2(z4/z,) o
331s ( fgp (;]) ) ;.2
Tt ()6
L &2
T 1
(V) ® T350s S S5
52 )
"fs /E:' "t 0

Table 11.1. Transmissibn and reflection coefficients at J2 and their exact
optimization.
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to a first order in & may be obtained in closed form by substituting x = cy8 in
(11.3) and retaining only the lowest order terms in S§. This leads to

2 172
5// [Fal * oL X% ]

. 8
I SR £ Q8)2
—_— 1/2

fi ]O [ﬁnL M R R ]] ' _

Xapprox. -
(11.5}

I

Hav{ng been given fg s X s fL and choosing a small enough §, the coefficients
M _

(Bi) are easily computed and then the polynomial can he solved numerically noting

that the required root of the polynomial is a small positive real number. Alternatively

an approximate solution can be obtained by using (11.5). In either case, it is
noted that there exists an optimal value of peaker impedance to ground (slightly
smaller than the load impedance) that results in an optimized output waveform.

Let us assume we have choseun an optimum value of (fg /fL) resulting in
P

simplified expressions for the various transmission and reflection coefficients
Tisted in the third column of table 11.1. Noting that ref and Feg = 0 i.e.,
both the fast and slow w = 1 waves do not produce a reflected fast (w=2) wave,
the output waveform simplifies considerably and it is possible to write out
the optimized output waveform in terms of the initial fast and slow waves as

follows
(opt) ) w0 n{n-1)
Ve u(tets) + Voslar T (D" 8™ (getont,) (11.6)
0 £l * V%% L f2nts -6) -

(opt) - m
vL:p (8 = L (Vg8)(sT5 1) (1) P ult-(2m) e )

(Vgs2/ag) Zo (-1)™ & uit-(2m+1)t ) (11.6)
m:

The total optimized output voltage is then given by

vioPE) () = 9P (g) & y(OPE) (1)

2

M 0o -1
Vo u(t-te) + VgsPag T (1) s(1) y(t-t -2nt )
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§o-nmem u{t-(2m+1)e .} o (11.7)

Observe that the first term in. the above equation is the desired butput and the -
two infinite series contribute smail’periodic,7stepé]ike perturbations since each
term in both series is of second or higher order in 8. The above equation is
shown plotted in figure 11.1b wifh the step function source in figure111;1a.

We have on]y shown the initial full amplitude step at tf, m=0 term, n =1

term and the m = 1 terms, in figure 11.1b. The successive incremental steps

get increasingly smaller and the waveform rapidly approches its asymptotic vatue
which is the input itself delayed by tf. Observe also that there are no _
incremental steps at 3t and (t +2tf) in f1gure 11.1b simply because rc. = 0 and
Fes = 0 under optimal conditions. = :

In sketching the optimized output waveform in f1gure 11.1b, we have assumed
that ty < 3tf or (v2 > ¢/3) for purposes of illustration only. This does not
'restr1ct the analysis 1n any way. If the condition (V > c/3) is not valid,
it simply means the arrival times of the various waves transmitted into the
load are different. The characteristic features of the output waveform remain
: unchanged. )
&HM/E o It is-also of interest to investigate the optimized output waveform in
the frequency domain. Using the 11near1ty and time-shifting property of the
two-sided Laplace transformat1on we could write the- opt1m1zed output voltage
in freugency domain as

. oV, -st. ¥ ® | _ -s{to+2nt )
Pt gy = 0 T4 062, 7 ()t slnT) g T ETS
L s S 0 &
n=1
v o (2mt g )
+ Ll 5 (1" N
5 0 &
m=0
V, -st.| o —2st \" ~s(t-ty) ~2st \"
S0 T ey T (sl Sestage s ] (el )
S 0 n=1 0 m=0

The two infinite geometric series are summable giving
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a) Idealized input step waveform
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b) Optimized output waveform

Figure 11.1.

Input and optimized output waveforms.
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V£opt)(5)

So, it is seen

B R ] TS SR st
T+3e 7 ' 1+de
V., -st [ ‘a';ﬁr' S -2st .‘st; st || |
S0 0 __ 1. s Tty Btf
=e 1+ 25t GVEBe + 5 e e
- 1+de
. r st, __ ~-st
- e 1+ 8% /g S (11.9)
- e “+de ‘ '

that the spectrum of the optimized output wave is a fafr]y

compact expression (11.9), on which the first term is the desired output
spectrum and the second term is a relatively small bertufbation.
In concluding this section, it is noteworthy that having chosen § << 1,

a2 single optimization condition~(11.1) can yield a remarkably well optimized

output.
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12. Summary

In this nbte we have considered a two- conductor transm1ss1on line mode]
for the Marx-peaker assembly. The configuration is such that the Marx column
is parallel to the ground plane and a set of NP peaker arms are optimally
distributed around the Marx column [1]. The optimal peaker distribution entails
placing them on an equipotential surface and requiring that all peaker arms
carry the same current. A small correction may be required to this equipotential
to account for the finite number of arms simulating a cylindrical surface. In
any case, since the peaker arms are on an equipotential surface, they could be
mathematically modelled by a single equivalent peaker conductor. Such an
equivalence then leads us to a two conductor (Marx and effective peaker plus
reference) model for the entire Marx-peaker assembly. ' :

The coupled two-conductor-transmission line model is then analyzed 1nvok1ng
the BLT equation and its solution for a single tube. The output waveform for
an idealized step input, can be written in terms of five parameters namely
Marx impedance to ground (ngZO), Marx shielding factor (§), additional inductance

of Marx (LM), peaker cage impedance to ground (Zofg ) and the load impedance

p
(ZL=ZOfL). Out of_these five, ng,_ng, LM and ZL are cons1defed as given and {*““}
we then can optimally choose & and fg to produce desirabTe characteristics in :
P ' ,
the output waveform. The optimal value of fg can be obtained by solving a
P .

fourth degree polynomial and the optimal f_ is seen to be sTightly less than

%
fL i.e., the optimal peaker cage impedance to ground is seen to be a few
percent less than the load impedance.

It is also noted that owing to the additional series inductance in the Marx
column, a fast and slow mode get launched at the.input. Al1 the characteristics
of these two modes i.e., excitation amplitudes, eigenspeeds, eigenvoltages,
eigencurrents, eigenimpedances are derived in closed forms. The transmission
line network under consideration is a single tube connecting two'junctions with
the load connected at the output junction. The two junctions are characterized
in terms of their scattering matrices.and the relevant transmission and reflection
coefficients are also derived.

We have been able to eliminate the reflection of the fast wave to fast
wave (rff) and the reflection of the sTow to fast wave (rfs) at the output
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junction by choosing § << 1, and by employing an optimal Zp = Zofgp. This
choice also makes the transmission coefficient of the fast wave 1nto'the Toad
to be unity, which is a highTy desirable result. For a;givén‘step funct{oﬁ
source, the optimized output consists of a delayed step function of fﬁ]l
amplitude with small incremental steps each time a slow wave is incident on J2.
Optimized output waveform is.sketched;

In conclusion, it is -seen that there exists an optimal peaker cage impedance

(somewhat less than the load impedance) that results in an optimal 6utbut
: waveform. The key lies in having a sufficiently Iarge'NP (such as 8 or 10) to

make & small (.05 or less) and then optimize I, {= peaker cage impedance).
Precise computations can be made very easily for a given Marx geometry, locad
impedénce_and the Marx inductance. It is indeed remarkable that a_singie
optimization condition on Zp‘yie1ds an output waveform with many desfrab]e
features. o '
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