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Abstract

The object of this note is to deveiop theoreticai considerations useful
in determining the electromagneticaily optimal positions for a specified
number of peaking-capacitor arms about a Marx generator parallel fo a ground
plane. It is shown that one can determine this via a conformal transforma-
tion, Furthermore a parameter is defined and computed which is indicative
of the effectiveness of the peaking-capacitor arms in shielding the Marx from

the ground plane.
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I.  INTRODUCTION

In attempting to determine the hardness of systems to a nuclear
electromagnetic pulse (EMP) environment one often performs system level tests
using a simulated environment [1]. There are a number of factors which
influence the behavior of the simulated electromagnetic field, including the
physical design of the simulator and the design of the pulsers which provide
the transient energy to the simulator.

In this note, attention is focussed on certain aspects of the Marx type
of pulse generator such as installed in numerous EMP simulators. Specifically,
we address the problem of optimal positiohing of a'given number NP of peaking
capacitor arms around.the central Marx column, above a perfectly conducting
ground. plane.. After a brief discussion in the next two paragraphs of some of
the background material, we conc]ude this introductory section with remarks

~about how this note is organized.

Traditionally, the pulsers for EMP simulators have been developed and
built by. researchers and pract1t1oners of the science of high voltage
engineering. However, it is useful to think of the pulser as a wave generator,
launching é_transient EM wave onto the wave guiding structure that may be
represented by a suitablie Toad. In a typical situation, the ioad is a two-
paraliel-piate transmission line type of EMP simulator, with a nominal input
impedance- that' is dominated by*therprincipé] TEM ‘mode- of propagation.

Although the-simulator viewed as a. transmission line-can and does support the
non—TEM'modes, the input impedance of the simulator is still mainly governed
by -the TEM wave because- Lhe non-TEM modes (E {or TH) and H (or TE)) are
evanascent near both ends of the simulator.

So fortunately, the load into which the pulser delivers transient energy
is a quantity that is known fairly accurately and it is mainly purely
resistﬁve. Typical values fdr this load vary in the 1002 to 150Q range. By
replacing the simulator per se with a resistive load, one can begin to focus
attention on the various pulsef‘components.



In general, the performance characteristics e.g., TEM, E, and H modes in Co
cylindrical and conical regions, field mapping, terminator effectiveness of
the simu]ator'properarexnuch better known [1 to 6] than the performance
characteristics of the pulse generator viewed as a wave generator/launcher.
See [1] for a more complete bibliography concerning EMP simulators, and [7]
for a review of the various pulse power systems used in EMP simulators.

Also, [8] contains a survey of available Van de Graaf and Marx pulsers as
well as typical parallel plate transmission-line type of simulators. Some
problem areas associated with Marx pulsers have been identified and addressed
in the past. An important aspect of Marx pulsers relates to the electro-
magnetic optimization of the relative orientation or positioning of Marx and
peaking-capacitor arms. Such an electromagnetic optimization is the subject
of this note. Related past work in this area [9] considered a numerical
sotution for. optimally distributing 4 peakers around the Marx generator. We
seek a generalization of this procedure with approximate answers for a
large number of peakers.
_ _After a brief description of the physical model of a typical Marx and
peaker system in-Section II, Section III deals with the multiconductor
transmission-1ine model for the Marx/peaker system based on the theoretical
considerations found in [10]. This is  followed in Section 1V by a simplified
two-wire model of a Marx/peaker system. This model is obtained by essentially
replacing the system of NP number of peakérs by a singie effective peaker
conductor. Next in Section V, the field and potential distribution for a
1ine- current or- line charge over a ground piane [11, 12] is reviewed for
later use. In Section YI, the optimal locations of peakers based on the
two-wire model constraints are discussed, followed in Section VII by a
nrocedure to determine- the optimum peaker Tocations based on a conformal trans-
formation. Simﬁlified formulas for large values of NP are obtained in Section
VIII. This allows us to define a parameter & which represents the undesirable
coupling between Marx and ground plane through the peaking capacitor array.
This is followed by an illustrative example of NP = 8 and a load impedance
of 1500. This note is concluded with a summary in Section IX followed by a
Tist of references. | | -
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IT. PHYSICAL MODEL OF PEAKERS AND MARK

The Marx. type of pulser under consideration has an array of peaking
capacitor arms as part of its electromagnetic configuration, which aids in
delivering transient energy to the EMP simulator. Ah jdealized Marx generator
driving a conical wave Tauncher is shown in figure 2.1a. The Marx/peaker is-
typically connected-via suitabie transitions to an output éwitéh near the
apex end and to the wave launching section of the transmission-1ine type of
EMP simulator on the output end. A cross-sectional view showing the Marx
generator and the peaker arms distributed around it is also shown in Figure
Z2.1b.. The:-problem at hand is.to determine-thé=optima1 locations of a speci-
fied number of peakers in a given cross. section. Typically, the Marx column
is approximately elliptical and.a peaker arm is rectangular 1in their.croés
sections. However, it is desirable to model the Marx generator and the
peaker arms by ;ircu]ar cylindrical conductors with apbropria@g per-unit-
length transmission line parameters. Additional distributed elements may be
included if need be e.g., series Marx inductance L& can be added to the
per-unit-Tength transmission 1ine inductance. In the remainder of this
section, ways of modelling the Marx coiumn and a typical peaker arm are dis-

cussed.
1. Marx-generator model

A typical Marx column consists of a series of individual capacitor
trays with associated.charging and: tfiggering circuit elements and the indi-
vidual Marx switch. Although the Marx might be approximated as elliptical in
cross section, it is convenient to choose a circular conductor model for
purposes of analysis. At Teast 3 models appear bossib]e to repreéent the Marx
generator. as. follows: ' | |

(a) a line current at the geometrical center of the Marx as
shown in figure 2.2 (which can represent the current going

(=2
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- through the Marx switches and capacitors with average
position in the center);

(b) a line charge so placed as to make the "average" Marx
conductor an equipotential as in figure 2.3 (which allows
the charge to be distributed nonuniformly around the
Marx (typically on grading rings) so as to more closely
match that appropriate to the exterior geometry);

(c) two line charges so placed as to make the approximately
eliiptical outer boundary of the Marx an equipotential as
in figure 2.4.

Models (b) and (c) above rely on the fact that placing a conductor on an
equipotential surface does not alter the field and potential distribution from
a line current or charge. It is further noted that the "average" Marx con-
ductor has a radius M which can be approximated as an average of the radii

of the inscribed and circumscribed circles, as seen in figure 2.3. The line
current at the geometric center is accurate for estimating the per-unit-length
inductance parameters, whereas: the line charge models yield accurate
capacitance per unit length parameter. Model (b) above is sufficiently . {fﬂ)
accurate for the present pufposes and can be used with an added Marx induc- -
tance Lﬁ. It is also emphasized that such a model is strictly valid in a cross
saction i.e., if the Marx generator is sioping with respect to the ground
“plane, the equivaient-line-charge model wili also be sioping. This process of
obtaining the line charge is illustrated in figures 2.5, 2.6 and 2.7.
Basically,. one cbtains the height of the iine charge at any two cross sections
to arrive at the sloping. line charge. The net result of the sloping Marx
generator is that one has to determine the optimal peaker locations at Teast

in two cross sections and slope the peakers also accordingly. This is of
interest in practice, whereas the theoretical considerations can be demonstrated
in a cross section.

2. Peaker-arm model

The peaking capacitor arms used in conjunction with typical Marx
generators serve the function of masking the induttance of the Marx and thereby
orovide a peaking element in achieving a fast rise time pulse into a transmissiogfﬁ}
Tine type of EMP simulator: Each arm consists of several unit: peaking capacitors

8
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connected in series, each of which in turn contains a series string of the
elemental or the basic pad capacitors. Typical shape of a unit peaking
capacitor is shown in figure 2.8 and an equivalent cylindrical conductor
model for an individual peaker arm is developed 1ﬁ figures 2.9 and 2.10.

In concluding: this section, it is noted that the typical cross
sectional shapes of Marx generators and peaker arms are non-circular, but
approximate circular cylindrical models which give an equivalent radius
are possible as illustrated. Nofe that the average used in figure 2.10
is not the on]y.or‘most accurate equivalent radius. The present result
is quite accurate ff h << w or conversely, since it is given the well-known
result for a strip. Such models with equivalent radii are useful in
later -sections dealing with the question.of optimal peaker distributicns

about the Marx generator.

il
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III. MULTICONDUCTOR TRANSMISSION-LINE MODEL FOR MARX AND PEAKERS

The central Marx column along with the surreund1ng peak1ng capacitor arms
over a ground p]ane form  a multiconductor transmission line. Conseguently, a
multiconductor transmission 1ine model of the Marx and NP number of peaking ‘
capacitor arms is useful in analyzing the wave transport properties. Some of
the relevant considerations from the general theory of multiconductor trans-
mission iines [10] are summarized below.

The ana]ySJS of the. transmission-1ine networks described in TlO] is. based
on the network excitation from Tumped or distributed voltage and current
sources located at source positions along-each-transmission-line section
(tube). Such a specification of sources.is useful for: the: present applica--
tion-of the Marx/peaker system..

For rev1ew purposes, consider an N-conductor p]us reference transm1ss1on
line as shown in figure 3.1. N could be equai to (NP+1) in the present
applicatidn and the (N+1)th conductor is taken as the reference and it is
also the image plane. The starting point of the derivation offvoltages and
currents is. the fami1iak set.of 2N transmission-line equations

_%E (@5.(2;5))‘ =-(i;;m(s)> '(iﬁ (z,s)) | (3.1)
'%E <ih {Z5S)> - “<§5,m(5)> '(Gn_(zgs)) | 13.2)

where V and I dencte voltage and current in the comp]ex frequency s-plane,
> ;«-

1Z is the direction of positive current tlow, \Z' ) ana\\Y' m) are respec-’
3

* tively the per-unit-tength longitudinal impedance and transverse admittance
matrices. If there are source tefﬁs,.the 1ght hand sides of (3.1) and (3.2)
are modified by the addition of(jggs)(z,s)s and fés)(z,s) respectively
where the superscript (s) denotes source vectors.

’ In the special case of a lossless transmission line consisting of perfect
- conductors. embedded in Jossless, dispersionless media

13



Conductor N+1
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Figure 3.1  Section of a general (N+1) conductor transmission line.
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Figure 3.2 . Marx generator with its NP peaker arms above a ground plane
' viewed as N- conductor transmission 1ine plus reference:

N = NP+1
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where
(Lﬁ m) = per-unit-length inductance matrix
(3.4)
(Cﬁ m) = per-unit-iength capacitance matrix
which are assumed to be dispersioniess and, hence, constant matrices.
by \
Recall that the squared quantity of the propagation matrix(yc (s) /]

is equal to the product of the two matrices according as
(@) = (Gae) - (o)
(Yc -(s)) = \Z; u(s) Yo mis) . (3.5)
Tn,m .

where the square root is taken in the p.r. sense as the positive square root
of non-negative -eigenvaiues of the right hand product. Then the characteristic
impedance matrix can be: found via

(i @)« (G @) ()
- o S | _ |
(Ych,m(S)) (Zn,m(s)) | | (3.6)

\ “n,m /
A\

1l
—\E

Numerous formulae, including the above, are discussed in more detail in [10].

The above equations may now be specalized for the Marx/peaker system of
conductors. Owing to the presence of the additional series inductance LM of
the Marx, which the peaker arms are designed to mask, the longitudinal-"
impedance-per-unit-Tength matrix takes the form

15



_(i;hm(s)) = sy (fgn,m) + s Ly

f omm e mmam e o f
g g
t )
| 1
! )
' -

\ f§ RN N N - fg

\ Np+l,1 NP+1,NP+1/

+ 3 LM (}n,NP+1 lNP+l,m> (3.7)

A supermatrix notation [10]} can be introduced in writing (3.7) above

geometric factor supermatrix (for u and v = 1,2)

as follows

_—
" 4
w0

=3
=]
\.____/
L

"l

(Ny x aP) matrix representing the peakers {3.8)

(1 x 1) matrix representing the Marx

i
I

(NP x 1) matrix representing the peaker/Marx interaction

p———
-+
=
=
=
e imeist ™
[y
-
Mo
i

(fg ) = (1x NP) matrix. representing the Marx/peaker interaction
n.mj/ 2,1 : ‘ o

we_a1so have
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L‘"\\_,/';

(¥, @) = se (fgn,m)'l ‘ | (3.9

with u and ¢ being respectively the permeability and permittivity of the
mediuﬁ in which_the multiconductor transmission Tine is immersed (assuming a
uniform medium). | | | | |

Note that if only reciprocal media are used {which is certainly the case
with most d1e1ectr1cs) then for both capaC1tance and inductance purposes, the
matrices are symmetric, j.e.

N..___H
R
- -
=
e
wn
' ~
u
—
:j-e
=
—
w
\.M—_-”
—_

"
Y 4
\ ( T
| =|f (3.10)
\ g1'1,m/’1,1 \gn,m 1,1
£ Rt )T
In,m /[ 2,1 ‘ Sn,m/ 1,2
, .
[ \1 ={f \T
\ %nm/1.2 \%amfe,1

-
1l

matrix transpose

From purely geometrical considerations, one can write down: the elements. of
the geometric factor matrix as [13] (assuming thin conductors),

s 2y .
L n (——D) for n =m
T \“‘n
£ - { . (3.11)
g (1) \
n.m l;ﬂwa(dngn)forra# m
d
L n,m
formandm=1, 2 .. .. .. NP where. as shown in figure 3.3

17
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A = height of the nth peaker above gropnd plane

d . = d . = distance between the centers of the nth and mth conductors
d£1% = dé1% = distance between the centers of the mth conductor and the

‘nth image conductor = distance between the centers of the

-nth conductor and the mth image conductor
. ' -

rpy = common radius of peaker arms o | (3.12)
M = fadius of Marx for capacitance purposes

hM = height of Marx

h&e) = height of the line charge modelling the Marx, for later use

The remaining matrix elements are. given by
4(1)

fg- _ %F on n,NP+1 (3.13)
n,No+l dn,NP+1
form=1, 2 . . . .. NP
and lastly
' [
(e)
. = = (ﬂm_ ) (3.14)
NP+1,NP+1 M

Recall that while M is the Marx radius for capacitive purposes, the same radius
can be used for inductance parameters by the addition of an extra series induc-
tance Lﬁ as already described earlier, so the fg parameters are based on papaci-
tive considerations.

These are the general relationships between the voltages and currents on
peakers and Marx conductors. However, certain physical considerations apply
during the péaker charge cycle and after the closufe of the output switch in a
typical Marx pu]éer. These considerations Tead to simp1ificatiohs as described
in the fdl1ow1ng section. - | ' -



IV. DESIRED TWO-WIRE TRANSMISSION—LINE MODEL OF MARX AND PEAKERS

In the preceeding section, the interréiationships between the voltages

and currents as a function of position and frequency on the Marx/peaker system
were outlined via the use of per-unit-length Tongitudinal impedance and trans-
. verse admittance matrices. It is the purpose here to specialize these equations

under the applicable physical considerations.
Recall that in a shorthand notation, we had

(7 (2.53)
f (f )
= =15 (gn,m> 1,1 gnam 1,2

f - (f )
( gn,m) 2,1 ( gn,m 2,2

/6

+ SLM \n,m-:) i,1 | (On,l> i,2
\(Ol,m) 2,1 (1), ,
(:> f ( n(z,s)) 1 \
| (fh(z,s)) 5

{) = generalized dot product

c:_lc_
N

=i}

!

where we have partitioned the vectors and matrices in a fashion compatible with

the previous partition of the geometric. factor matrix [14].

Since our interest is in determining the optimum peaker locations, rather

than detailed vo]tage or current waveforms, it is adequate to focus attention

on either of the two transmission-line equations. In the above '2 X 2"notation,

20
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subscript 1 refers to-Nﬁ peakers and subscript 2 refers to Marx, as before.
Next we require that the following conditions be satisfied

a) current fM in the Marx should produce equal %%ﬂ in all peakers
b) Qoltage VM on the Marx should hroduce equai‘%% in all peakers
c) equal currents in all peakers should produce equa?-az in all peakers

d) equa] voltages on all peakers sh0u1d produce equal = in all peakers.
Conditions. (a) and. {c) above are-applicable on the;gg_equation (4.1) and
CthitionSZ(bf and {d) above wouid-appiy to a.corresponding %%;equation.

Let us investigate the implications of conditions (a) and (c¢) on {4.1).

Condition (a)-

Setting the peaker currents to zero, i.e.

(4.2)
{fn)2 = fM (scalar quantity)
and inserting these into (4:.1)
d ~ -~
e (V )*, = =Sqg (f : ) I‘n
dz: Tl AN A
= -su (f‘ ) VT) fM (by symmetry) (4.3)
gn,m' 2,1 . ¥ T C

Requiring all the peaker voltages to be the same {as functions of z and s},

21.
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sy fo (1) T,

(ln) Np component vector of 1s
Equal (dﬁ/dz) on all peakers imply that the left side of {4.4) is constant

and, consequently all fg coupling peakers and Marx are fequired to be the
n,m

same fg, as indicated. This condition using (3.11} leads to
PM :

41
%ff o n’NPH = constant
T —d-"-m :
\ n;NP+1

= constant

leading to the requirement that the peakers be located at centers (xn, yn) of
figure 3.3 such that '

3X5‘+ (yn - hé?))ﬁ .
! é ( i = [same for all n =1, 2 /..., Np“peakers] (4.6)

Koo (yn +h e’)}?"'%

; -i

It is noted that.all (xn, yn) from-above lievon:a circle and,. the parameter
hé?)ﬂr(4.6) is the height of the Marx above the ground plane..

Condition (c)

The second condition is that eqﬁaT peaker currents should produce equa1

dv/dz- in:all peakers. Setting equal peaker currents and zero Marx. current,.

~ we have

@4
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2
=
f
[ g
n
i
=
i
o

(4.7)
In = IPA forn=1, 2, ..... NP
= same current in-every peaker arm
Inserting the above into (4.1), we have
d (T), = - su(f "(i) (4.8)
2 = - sy 4.
dz *'n‘i s ( gn,m) 1,1 n'l
Requiring the voltages on the left as before to be all the same leads to
dv
(1) P = - s (f‘ ) (1) 1 | (4.9
" "\ 9ym/ 1,1 n® “PA )

The requirement that the left side of (4.9) be the same for all peakers implies
that the sum of all elements in any row of(?g )be the same. In other words
M 2n,m _

Np

f- = [same for-alln =1, 2 ..... NP] (4.10)

By symmetry, it also means

It
—
-

ro

f = [same for all m

g = [same foralim=1,2..... Np] (4.11)
n,m

Note as discussed in [15] all the f are positive so that the sum is positive

_ 9n,m 7
also. Using (3.13) and (3.14) in‘(4.ll) we have

23
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(1)
fg = % g,n(dn, )
n,m dn,m
m=1 m=1
N
pa 2
. 1 wn (Xn"'xm) * (yn * ym)
B e 2 2
o (x, = x )"+ (v, = ¥,)
m=1
B NP : .
: 2
=_%E on (xp = %)™+ (v +¥p)
(x - x )2+ (y - y)*
n m n” Im
| m = 1 n
= [same for.alln=1,2 ..... NP] (4.12)

The above restriction leads to the requirement that the product quantity
in rectangular parentheses. above be independent of n, recalling that (xn, yn)

is the ‘location of the center of the nth peaker.
One could alsc have started with the (dI/dz) equation, applied the other

two condItions j.e., {b} and {d ) and arrived at an eduiva]ent set of constraints
for NP peaker locations. In the interest of brevity and simplicity, this has

not been carried out here.
It is seen that, under the simplifying constraints above, we have a

situation, provided that the boundary values at the ends of lines are also con-
sistent with. equa] peaker voltages and currents, wherein

/fv (1 , [. / \ /(0

d { "ﬂ’li -1 s, ﬂ:m) 1.1 (Onsm) 157\

daz \V 1)2 : l_si-l &( 9, m)u v) + " \(On m 2,1 (1“=m) 2;}

o | Ipp (1) 1

Iy (1n) 2/ - o (4.13)

24.
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o d, fPA (1n)y - - ose ((f )-1.) . VPA (p)y |
2\ 1, (), In.m /u,v Vm(l.ﬂ)-2 (4.14)

i

are satisfied.

. In the above u and v take on the values of 1 and 2. Writing out the f

g
matrix appearing above,

f f (1)

: (gn,m)l,l I " 1,2
(R
n,m+ u,v
£ (1) f, (1, 4) -
Gy Mo g 9L o) (4.15)

Under equai peaker voltages VPA-= VP’ i.e., the same voltage VP on all peakers,

/ A [ /¢ i ‘00

g | Vplzas) )

| g G- |
CI sl P fPM S
Vy(z,s) f M

| /IP\ - ) o (a.16)
\in) '

p = Np Ipy

I

where Ip is the total peaker current.

Expanding out the first of {4.16)

S i’P
d = -
e v (Z,S) - Su f N I (4 4./)
z P ' 2 Soum | Np 9oy M
m=1
— ~ 4
any n



Np
-‘j;_- Uy(z.s) = -1 su f E -[suf +s|.,5,|:] Iy
, ' ; gn,m NP M .
_ n=1 _
any m (4.18)
If we identify
No NP
.1 1 :
.F. = f = e f (4.19)
Oy N . g, Ny - > g .
P P ; _ n,m P : n,m: ,
n=1 iy m=1 ‘
© anym any n '
we have
4 Vy, = -sp|f I, + i
dz P 3 g P gpy M
{4.20)
R R Lﬁ)*i]‘
dz M Lgp P Iy =N M
Corresponding to the above, one has. the df/dz equations, which may be
formally written down as
I /s SR A
P g g P 1
d- | _ . P PM .
e\ )T sE : ~ (4.21)
i VT S Vv
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Equations (4.20) and (4.21) above clearly display the desired two-wire
model of the Marx/peaker'system. 'The quantities that the symbols in the
above pair of equations stand for are recalled and summarized below.

GP(ZES)
fé(z,s)

dz

i

w

Hi

11]

1]

qua] peaker voltages

NP IPA(Z’S) = total peaker current

“incremental length along propagation dire;tion
complex fraguency =-Q + jQ.

Marx voltage
Marx current

permeapility of the medium = B, for free space

neaker geometric factor

No |
1 ' , , _
f for any n, as in (4.13)
. 4.22
—1 . (4.22)
M. T
- 2 2|
N & B DS A VA S
Foily. L AN > n_-m 5 |
L A R
R I S SN Iy
— i e o BELSY S i
I; 2” 5 ig) > t = geometric
X, * (yn + hy ).'!

factor between Marx and any peaker {independent of n)

coordinate of the center of the nth peaker
number of peaker arms

'individué] peaker arm current = fﬁA/NP

- .8
1 En(%M ) = geometric factor for Marx

PM‘,

fae]
|




h&e) = height of the line charge representing the Marx center

= eaffective radius of Marx for capacitive considerations which is
also used for inductive considerations with an added series induc-

- tance Lﬁ per unit length

In conclusion, we have formu]ated'the equations necessary for determining
the centers (xn; Y ) of all Np peakers, as well as arrived at a desired two-

- Wire model for the Marx/peaker system. Such a two-wire model is useful in

study1ng wave transport characteristics across the Marx/peaker assemb1y

However, an alternate approach based on conformal transformation is also
possible for determining the optimum peaker locations. In the following
Section V, we review the field and potential distribution of a 1ine charge or
current before applying it to the-problem at hand.
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V. FIELD AND POTENTIAL DISTRIBUTION FOR A LINE CURRENT OR CHARGE
OVER A GROUND PLANE '

Figure 5.1 shows the geometry of a line current or charge over a ground
plane. The wire carrying the current or charge is of rad1us a and located
at a he1ght b above a ground plane The cross-sectional p1ane is the x-y
plane and the direction of wave propagatzon a]ong the equivaient two-wire
transmission Tine is in the positive z direction. The object is to obtain
the potential and stream function .profiles. The solution to this classical
problem is availabie in the literature [11, lé], and it is shown in figure
5.2 and briefly discussed. The solution is for a Tine'chargeror'current.and
a-suitable-equipotential could be made to coincide with the actual. physical
conductor. The: Tine curréht'or*charge.soiution is based on a.conformal trans-—
formatlon of the phys1ca1 p1ane .= x' + Jy' into a complex potential plane
W=u+ JV where u = e1ectr1c potential {volts) and v = magnetic potentiai |
(amps) and (-dw/dz) will yield complex fields. The relevant equations [12]
are reprdduced below - '

i

compliex variable for the physical plane = x' + jy'
compiex variable for the potential plane = u + jv

= = 0y
1t

= constant is an equipotential (= magnetic field 1ine)
v = constant is an electric field line (= magnetic potential or'stream
function}

+ i .
w = n (_c._%\ 2j arccot (z)
. (5.1)

j coth (w/2)

corresponding to a pair of iine currents or charges at (0, * 1) carrying
equal and opposite currents or chdrgeS'per unit length. A1I lengths are
norma]1zed by b wh1ch is the height of the 11ne current or charge above
the ground or 1mage plane Expand1ng (5.1) g1ves
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Figure 5.1 Line current or line charge above a grdund plane.
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Figure 5.2 Stream function and potential distribution for the 1ine current
_ .
or- 1ine- charge-above - a ground: plane:. L)




T g =1 x'2 4 (1+y1)?
A L4 =5 &n 7 5
. xl + (1 - yt)
- : oxl
vy = arctan -
x12+ 12._ 1
x! = sin_(v) (5.2)

= Cosh (u) - cos (V)

vl = sinh {u)
v~ cosh {u} - cox. (v}

The. Tine current or charge is located such that the circle of radius a is an
equipotentﬁaircorresponding'io*the'ccnduczar; Thecontours of constant u and
v shown- in- figure- 3.2, avre: obtained from-{5.2). Furthermore;. it can be shown
that thereguipotential u = ¥, isia circierwith.a normalized canter b’ and

normalized,radius ré given by

' i:} b' = coth (u.); r’ = csch (u,) - N o | (5.3)
, ol e o _ 2
with
(b/r.) = {b'/rl) .= cosh (u,) (5.4)

This completes a review of the osotential and. field distribution of a jine
current: or charge above a ground. plane. This distribution of fields ana:
potentials is used later in Sectionm VII for- determining the optimal iocations
~of a specified number of peaker arms. '
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VI. OPTIMAL PEAKER LOCATIONS BASED ON TWO-WIRE-MODEL CONSTRAINTS

The constraints on the two-wire model lead us to the following, as one

may recall
f = f = f
g g
n,NP+1 NP+l,m PM
(6.1)
Np Np
1 P
—_ o f = F = T
NP ZE: In.m NP gn,m' 9p
n=1 m=1

Put different1y, the NP peakers should be placed such that the fg parameters
between the Marx and any peaker is the same. In addition, the peakers should
be placed such that the sum of the elements of any row of the peaker fg matrix
does not depend on the row. By symmetry, this is also true for columns.
Mathematically, these two constraints become

L] 4

2 (e). 2\
%E R h? )) 4 Jsame constant“for=a]1:}
2 €2 in=1,2 ..... N
X, t (yn + hM- ) ’ P

"‘£=7 :1,2 ..... N
=y, —-ym)é/ SO P

2 2\ |
S Ln (Xn - Xm) * (yn * ym) \ {Eame constant for all

-P-*-Il-a
-3
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where hée) is the effective height of the ﬁarx above the ground plane. The
unknowns in {6.2) are'(xn, yn) form=1,2.... Np. In other words there are
2 Np unknowns (i.e. N_ number of xs and Np number of ys) and there are enough
equations in (6.2) to solve for (xn, yn) in terms of a single (xn, yn) that
could be arbitrary. Efficient numerical schemes could be devised to solve

the coupled set of (6.2). One such scheme §s below. |

Step 1. Select one peaker at location (xl, yl).

Step 2. Compute f_ for it using
| Ipm

2 (e) 2\
] I T T W & 5 (6.3)
I I WA O -
o NI AN '
Step 3. Eva]uate.(NP—l) differences. as
{(pM) _ ( | .o
A2 = {f - f for i=2 ..... N
' 1 ,m 91,M) | P
. C e)y2y\
=L 1 x? * Ay - h&E))Z | X% + Ay - hé ) | oy
A 5 (E) 2 -&n 7 (E) 2 R (6.4)
OAXT o (yy oy ) Xp + {y; + hathE '
Step. 4. Evaluate and minimize: the quantitys
NP B .
. § (oM) 2
Z E;AT : J + 0 (6.5)
i=2
Step 5. Similarly
Np
(»)]?
jg: AT S0 (6.6)
1
i=2
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A )+ g+ )

1 T -
2 2
m=1 (g = xp)™ + {yy = yp)
NP 7
Z Y (TR ym)Z\ |
. R ZIE Ny (6.7)
wd

Qut  of the minimization of processes in steps 4 and 5 above, come the Tocation
of'the:(NP-l) centers (xnj yn) forn =2, 3 ..... Np in terms of an arbitrary
(x> vq)e

This formally completes the procadure for cbtaining the optimal peaker
locations for a specified number NP of them, based on. the constraints appii-

cable on a two-wire transmissjon-line model for the Marx/peaker assembly.
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VII. OPTIMAL PEAKER LOCATIONS BASED ON CONFORMAL TRANSFQRMATION

Earlier in Section V, the potentia1 and stream function of a line current
or charge above a ground plane was reviewed‘ 'The object of this section is to
apply those results in determ1n1ng the ‘optimal 10cat1ons of a specified number
NP of peakers, each of effective radius PPA The. Marx generator column is
modelled by a circular ‘cylinder of effective radius ry- in other words, the
neight of the line current or charge above the ground'p]ane is chosen such
that the ' average“ Marx conductor is an equipotential.

ReferrTng to f1gure 2.7 for example, it is seen that the Marx column could
be sloping, resulting in vary1ng heights of Marx at different cross sections.
This calls for the analysis in at least two cross sections. But the procedure
of obtaining peaker locations could be illustrated in a cross section, and
applied at several cross sections as needed. |

In a given cross section, one first determines the height of the line
current or charge.using'(5.3) and. (5.4). In this cross section, one chooses
a-particular equipotential to distribute the peakers. The procedure is out-
Tined below and illustrated in figure 7.1. Recall that'we need equal peaker
voltages, which means the individuai peaker arms lie on anh equipotential
surface caused by the-line current or. charge modeiiing the Marx.

The we follow the following procedure:

(a) normalize all distances to Marx line current or 1ine charge height so
that this line is located at x' = 0 and y' = +1.

(b) determine the desired geometric factor o given by |
fp = Zp /2 . where | - .

Z, = impedance of peaker array to ground p1aner

P
Z = characteristic impedance of the medium = Jp/e
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Figure 7.1 Determination of the equipotential surface upon which NP peakers
will be distributed in the normalized physical plane (z = x' + jy").
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{c} the desired geometric factor fP will then correspond to a desireq

equipotential

Upg

= 27 fPO (see footnote below)

(7.2)

(d) the height b, of the center of and, radius ro of the desired equipo-

tential are given by
b, = coth (uPO)

r. = c¢sch (upo)

(e} specify the,number‘of-peakers,NPZ

(7.3)

(f) For the given NP,.Compute;a correction term Ar in.the radius of the.

equipotential uDO,'resu]ting from the fact that a finite number of

'rods' is approximating a.continuous. surface. Using a planar

approximation [16], this correction is given by

m

T X peaker diameter

AF & Ehalf the peaker §pac1‘ng] X on l: peaker spacing

For the peaker spacing, one may use the average spacing given by
1 /circumference of the. uncorrecied -or:thel

n

peaker spacing

= 27 rO/NP
~wWhich resuits in -

r T
A!""a"ﬁg n (T\I-Q.F—)
p TUPIPA

———
[{w]
—r

=r +
Pp = ro Ar

NP desired equipotential

The corrected. equipotential then has a radius given by.

: ahd the corrected equipotential corresponding to o is

_UP = arccsch  (vrp)
fp = up/(2m)

éfp = (upo - UP)/(ZW)

Therfg parameters in this note are referenced to ground plane,. whereas

]

(7.4)

{7.5)

(7.6)

(7.8)

reference: [12] is for the: full transmission Iine. Hence the factor of two.

"~

v}
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_{(h) On this corrected equipotential Up We distribute the NP peakers spch that
they all carry equal currents =‘IPA' If_the total current on the peaker
‘cylinder' s IP, one may divide the cylinder into sections carrying
equa1 currents Each section is then rep]aced by a peaker arm implying
that the Av between adjacent peakers on the corrected equipotential be
the same. This approximation gets better with increasing value of NP'
So, one chooses the first peaker at v = Vis based on symmetry about the

~y'axis, then the remainder of'(NP-l) peakers are chosen according as

2mn '
= v T —

Step {h) above may be déscribed in some additional detail. It is noted
that the peakers are distributed on the corrected eguipotential in a manner
which makes aAv = constant = (Zﬂ/NP) between adjacent peakers. This arrange-
ment ensures approximately equal currents in all of the NP peaker arms during
" the peaker charge cycle, as well as during the discharge following the closure
of the output switch. Imagine that the peaker arms actually were replaced by
a circular perfectly conducting cylindrical shell given by up.= constant..

Then the distribution of the surface current density and surface charge
density. is given by-the-stream function v. This-applies separately both-out-
side and inside the cylindrical shell, since this imaginary sheil is a shield.
Taking equal av. corresponds to equal currents and charges per unit iength.

In the center of sach av the: current and charge per unit.length is accumulated
cn a peaker arm, and if av is sufficiently small {or NP is sufficiently

large) this represents a small perturbation Note equal currents and charge
per unit length require equal 1mpedances in the arms, specificaily the
capacitance - length products of these arms should alT be the same.

It is also recognized that for both odd and even values of NP’ two
choices are p0551b1e for positioning the peakers as 1]3ustrated in figure
7 2, while still maintaining a constant Av increment and symmetry with
respect to the y axis.
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{Preferred)

(b) N, odd ( =5 say )

Figure 7.2 Two possible choices for peaker distribution, based on symmetry,
each for NP even and odd.
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For the case of NP = agven, one can have no peakers on the y' axis or 2 on the
y! ax1s as in figure 7 2a. Fobr the case of NP = odd one can have one peaker
on the y' axis, either directly above or below the Marx generator as in
figure 7 2b. In both cases the preferred conf1gurat1on resu1t1ng in the
largest minimimum separat1on between peaker arms and a circular Marx Cross .
section are indicated. For a circular Marx cross section this minimizes
average electric fields and resu1t1ng electrical breakdown problems. Note
that real Marx cross sections are not necessarily circular..

It is also recalled that the choice of a particular equipotentia1 up
ensures that the iransmission line formed by the “peaker cage" and the 9F0Uﬂd
plane matches the characteristic 1mpedance of the pr1nc1pa1 TEM mode of
propagation. Matching the impedance and ensuring equal currents during both
the peaker'chafge cycle and discharge'cycle,'is the essence .of this electro-
magnetic optimization.
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VIII. APPROXIMATE. SOLUTION FOR LARGE NP WITH ANIILLU?TRATIVE EXAMPLE'

As No. increases, the peaker cage begins to resemble a cylindrical

tubular conductor about the Marx. The rad1us and height of this "tube" are

governed by 1mpedance match1ng cons1derat1ons As NP 1ncreases, the
correction to the desired equ1potent1a1 may be neglected With reference
to figure 7.1,

rp & T
fp = ijZ , (8.1)
Up = Upg = 2m TﬁP

On this equipotential, one distributes the NP peakers according as
-1) (8.2)

with a prechosen-v1 based on symmetry and preferred configuration of NP = even
or. odd..

In addition to the distribution of large number of NP peakers as described
above, one could also estimate a coupiing parameter & which is indicative of

-how -well the Marx is shielded by the peakers. This factor § is derived below.

and becomes more accurate as Np increases. Consider an exneriment where the
Marx current I = 0 and we inject a total peaker current IP on the peakers.

We- then have

o1a.
N
="t
|
1
.0
]
-
e}

(8.3)

N
K]
|
]
LN
[ =
—h
Lan I
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Since the Marx has no current, the Marx voltage is nearly the same as the i5 ﬁ

peaker voltage éxcept for a small fractien, i.e.

Uy =V, (1 - 8)

leading to

4.V, d v
M _ . P
i -8 g

Using the above in (8.3) gives

f _
;gEE = (1 - s)
- | 1 -8
g'p .
ar
1
s =[1- IpM
—
9p

(8.4)

(8.5)

(8.5}

(8.7)

B i
R——

Using: the results in-figure 15 of. [16], and assuming that the spacing between

peakers is small compared to ro SO that a planar approximation is appiicable,

we- gbtain
Yy, Uy
M e n-g=2L
Vs Upg
[ up\ Upg = Up
6:1.—.—; = !
\ uPO}. Upg
. ZﬁAfP i AT
Upg
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8§ is easily computed from the following set of equations

fooo= 21) = Z
o (upg/ w). (Zp/ ) (8.9)
with
Upg = (ZWZb/Z) = 2 fp
up = arccsch (rp) ( |
- 8.10
rp = ¢sch (upo}
To (‘“o
Ar = — In
Np \Np "o

The  geometry for the above calculations is shown in figure 8.1
and & is shown plotted in figure 8.2 as a fUnction of fp = (Zp/Z)
for different values of Np. Note that Zp is the characteristic
impedance for matching between peakers and ground plane. Smaller

.values of & indicate better or improved Marx shielding by peakers.

The results of figure 8.2 are strictly vaiid for large Np approximation
(until the peaker arms approach each other to distances comparable to
their individual radii), but nevertheless they should be reasonably
accurate for the larger N, chosen. Such results are useful in the
process of determining an optimum number Np, when used in configuration

with wave transport calculations, across the Marx/peaker system.

Next, we may consider a case of N_=8 for example. The optimal

p

peaker locations will be as indicated in figure 8.3. It is observed

that the distribution of peakers is denser underneath the Marx and

becomes sparce as one moves away from the ground plane.

In coné]uding this section, we observe that in the Timit of large.

_Np approximation, the determination of optimal peaker'10cations simplifies
‘and, it is possible to define and compute a coupling parameter & which

is indicative of how well the Marx column is shielded by the peakers. An
i11ustrative_exampie.of._Np = 8 is also presented in this section. o

’
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for an assumed.set of normalized dimensions and a free

medium.

a4

I

NP peakers .
space .

N
o



i\
\ .. \\
£ . N
A
\%% A L’
\ \\ i
N o o /
- e I's
N See " s/
N el o _
"~ 77 corrected equipotential u
D |- GF e
TT T TN \
\ \\ \h—-equiva]ent circular
hp N Marx conductor:
hM' \ equivalent circular
) \ peaker conductor
—~ \\..
(&) -~ — non-circular peaker arm
hM
]
Ground piane
Y i
A At T T T e T T o T i i
Figure 8.3 An illustration of the optimal distribution of 8 peakers around

~the Marx..
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IX. SUMMARY .

In des1gn1ng puisers for CMP 51mu1ators one. is oftan faced with the.
problem of distr1buted peaking- capac1tor ‘design. Th1s peak1ng capac1tor
system not oniy has a circuit role in decreas1n§ the rise time of the.
output.pulse, but also an electromagnet1c function to serve as a boundary
For the: fast. output. wave.. isolating, this wave from. the induyctive Marx
generator.

To-achiever optimal shielding of thesMarx: and:reduce: oscillation.
between the different peaker arms, constraints are 1mposéd'to assure equal
voitages and currents on ail peaker-arms. [Dased onva two-dimensional
modeil(a-zransmissfonai1ne¥approx1matibn) optTimal positions fcr~the~peaker~
arms  meeting: these constraints are-derived. For-the-case-oT & targe num-
ber of peaker arms this probiem simplifies to. the use of a conformal trans-
formation with a correction for the geaker-arm spacing. This spacing
allows some coupling between Marx and ground plane at high frequencies
which can be simply approximately guantified.
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