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Abstract

An electromagnetic energy source that incorporates the peaking
capacitor arms of 2 Marx generator as part of its electromagnetic con-
figuration is to be used in an Electromagnetic Pulse simulator to be built
under the supervision of the Air Force Weapons Laboratory. In this re-
port, the positiohs of the peaking capacitors that fulfill certain desirable
null -flux conditions are determined. The characteristic impedance and
several other useful properties of the conical base of the pulser are also

calculated.




PREFACE

The purpose of the work reported here is to prov1de de51gn

data, der1ved through ana1y51s and Parametric study, to help to opti-

- mize the electromagnetlc conflguratlon of the pulser that is to be used
'in. the ATLAS: EMP simulator fac111ty Sufficient variation of the

‘parameters of the configuration have been included to optimize the per-

formance of the pulser in both the Pulser Test Fixture (PTF) and the

_hor1zonta1 mmulator of the ATLAS facility,

The authors acknowledge the usefulness of the technical dis- -

cussions of this problem with Dr. C. E. Baum of the Air Force Weapons

: Laboratory-
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SECTIONI

INTRODUCTION AND SUMMARY

The energy source for the ATLAS electromagnetlc pulse (EMP)_
51mulators will be a little different from previous energy sources for

" stationary simulators in that the peaking: capac1tor arms of the Marx
generator will be incorporated as part of the electromagnetlc parallel--
plate wave guldlng configuration of the system. Since it is effect1ve1y |
a piece of the transmission line gu1d1ng the s1mu1at10n pulse, it must

- satisfy the primary criterion for every portion of such a 11ne,- i. €., 1t
must have the same characteristic impedance as every other portion of
the line. This criterioﬁ, although impossible to satisfy exactly because '
of difficulties in both analysié and construction, should be satisfied as
closely as possible if one hopes for small reflections (little ringing)
caused b)_r the transmission line sections themselves. The reflections
caused by the presence of a test object are another matter and are the
inevitable result of the process of simulation. But reflections in the
absence of a test object must be minimized as much as possible in order
to ensure as _accurafe a simulation as is possible with the given energy

 source and to minimize the wasted energy.

Thué,- We.are induced to determine just what is the characteris-
tie impedance of each section of the transmission-line simulator. In the '
present case there are two major sections of the transmission-line simu-
lator (sections of the pulser) for which the previously available numerical
data on characteristic impedance is rather sparse. One purpoée of the
work reported here is to 'remedy that defect. The two sections we speak -
of are shown schematically in Figure 1 and consist of: (a) the base of the
pulser, which takes the form of a monocone on a ground plane and (b) the
four Marx generator peaking capacitor arms, when these arms are at the
stage in the generation cycle such that they form a portion of the trans-

mission-line,

The mere satisfaction of constant characteristic impedance

along the line does not uniquely determine the parameters' of either the
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Figure l: Schematic pulser configuration




monocone section or the ca-pacitor arm section. This cé.n be seen, for
example, in Section II, ,wh'en pairs of values of the r:rionocone parameters -
{cone angle and tilt angle) lead to the same characteristic impedance. . \_/
' Thus, we have some freedom in the choice of pulser parameters which
‘we can use to optimize some other aspect of its electromagnetic perfor- '

. mance besides the dominant reflection minimizing criterion of constant
characteristic impedance. Therefore, we are led to a more extensive:

study of the pulser sections than would suffice for just. a characteristic

impedance calculation,

In particular, for the monocone section .We can-consider that it

| should producé a tfansvefse field distribution that matches, as closely

as is feasible, the next section of line it is feeding into. Alternativel‘y

we couId_c;ﬁnSider reducing the back radiation as mucﬁ as possible._ |

This reduction does not necessarily work in opPOSition to the p.rqducfion

‘of good field distributions; in fact the two things seem to go together.

For the capacitor arm section, since it is desirable to reduce the volt-

. ages between arms as much as possible both in the capacitor charging

stage (when the return current is through the Marx generator) and 'the
discharging stage (when the four arms act like the top plate of a parallel- {\ "
plate transmission line and the return current can be thought of as flow-

ing in the images of the arms in the ground plane) we can consider those
configurations that result in zero net flux between any pair of arms under
‘one or both of the conditions on return current., We will now consider

these topics in a little more detail.

‘The monocone on a gfoﬁndplane can, by.invoking the theory of
images, be thought of as a symmetrical b.icone.‘ Such structures have
been studied e;ﬁtensively thebretically (reference 1 contains much of
this analysis)., primarily as an approach to the analysis of thin wire
radiating antennas. As a consequence, any numerical data that has

previously existed has been almost entirely restricted to the case where

1. Schelkunoff, S.A., Advanced Antenna Theory, John Wiley and Sons,
Inc., New York, 1952.
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the monocone axis is vertlca.l (when translated back to our te rms) Thus,
the first order of business in the monocone. ana1y51s will be to produce
-da.ta on the characterlstlc 1mpedance of a t:lted monocone conlcal trans-' :

' m1ss1on Tine. Th1s will be dorne 1n Sectlon II, 1. The re. sults of thls

calculation, ‘given in Section II, show that to attaln the high 1mpedances

somet1mes contemplated for ATLAS the monocone half-angle must be:

rather small (less than 20° ), but that_the monocone can be tilted consider-
ably. An example of a 140-ohm line would be a monocone with a 10° half- -
an_gle‘ tilted 25° from the vertical,

Another subJe ct on whlch prevzous quanhtatlve data is nonexlst- '

-~ ant is the distribution of the electric and magnetlc fields over the spheri-

‘cal wavefronts of the conical line. . This 1n£ormat10n is of use in trying

to pick. that monocone tilt angle Whlch will produce field d1str1but10n o
mos_t c105_ely matching those in the cross sections of other sections of
the simulator. Itis straight forward to derive ex;plicif e.q'uations' :i.'or.
the field lines on the wavefrcnt.. This is done in Section II.2. The 'p;.rl;ob—
lem of the useful pictorial presentation of the field-line déta has been - o
solved by drawing pictures of how the lines would look if they were
painted on a sphere and then looked at from the front (i.e., looking back

toward the apex of the cone). These pictures are given in Section II

From these pictures we see that the transverse homogeneity of the field

inéreases as the monocone becomes more vertical, but against this we,
must oppose the reminder that the curvature of the lines under the mono-
cone (those primarily involved in injecting energy into the simulator) be- _

come more curved, as viewed from the side view, as the monocone ap-

proaches verticality. A reasonable compromise would seem to be to

' have'thé. mon0c6ne tilt about 20° or 30° from the vertical, Of cours’e; _

when we speak of ''vertical' in the se remarks we mean the dlrectlon of
the normal to the groundplane. The groundplane itself could have a slope

within the pul ser section,

The last aspect of the monocone portion of the structure that

we will look at is that of back radiation. An analysis of back radiation

is given in Section II 3 under the assumption that the monocone is in-




finitely Iohg Such an assu:nptlon will Iead to an upper bound on the .

back radiation since the rest of the 51mu1ator structure will tend to _ _ !
direct more of the energy forward than an infinite monocone at a realis'—. T Q/
tic angle. Nevertheless, the analysls ShOWS that for reasonable 1nono— |

cone half- angles and angles of tilt the energy radlated back 1nto the en- =

_ tire rear herrusphere cannot exceed 10% or 209 of the total energy radxat-

ed (18% for a 10° half angle cone tilted 25 from the vertlcal)

The importance of m1n1m1z1ng voltages between capac1tor arms
©in the section of the source where they dominate the electromagnetlc con- .
figuration d1ctates that we should determine those configurations that
 result in zero flux between any pair of arms first, calculating character-
istic .irnpedances on.ly after suitable geometrical arrangements are

found. The ._desired configurations are ali_ symmetrical about a vertical
plane threugh the Marx gener‘a.'tor.' In Section III. 1 we treat the case
where the peaking capacitors are charging and the return current f'lo.'w.s
threug_h the Mark. It is found that by fixing the position of the outer

pair of the four capacitor arms, the null flux condition requires that |

the inner arms must lie along a certain line in the cross-sectional plane.
Plots of the inner arm trajectories are given as Figures 11 and 12.

There are planar configurations of the four arms in the present case,
which may be an advantage from the constructional point of v1ew, but
these become unavailable (and perhaps 1rre1evant) if we must also have
zero net flux for the second condition on the return current (1 e. through

image arms)

‘The case of image ~arm return current is handled in Section L. 2.
This analysis ie _appl.icable when the peaking. capacitors are discharging.
Agairx‘it is found that, when viewed in cross se ction for a fixed position
| of the outer pair of arms, the inner arms must fall on a certain line,

Plots of such trajectories are given in Section III,
There are geometrical configurations that satisfy the null flux

requirement under both conditions on the return current simultaneously.

This subject is treated in Section IIL. 3. It is found that for any position

10




of the outer pair of cépacitor'arms (within certain, not 'very restirctive,
11m1ts) there is a umque pos1t10n for the 1nner pair of arms such that

there 1s no arm- lmkmg flux e1ther with a- Marx return current or. Wlth

" image arm return current. The se inner arm positions can be found in .
: Sectiou III. To be able to fully use ‘the results shown graphmally in Sec-
tlon III ‘the reader 1s referred to the paragraphs descrlbmg thern, where
_an example of thelr use may also be -found. There is a rather wide 1at1- |
tude of ch01ce in arm-positions even when both null flux conditions" are

imposed ‘but none of these choices lead to a planar conf1gurat1on.

Some minor po1nts on the analys1s, of the nature of exp11c1t or '

1mp11c1t assumptmns and their _;ustlflcatlon, may be found in Sectlon IV

11




| ' 'SECTION II
TILTED MONOCONES ON A GROUND PLANE
1. IMPEDANCE
ITO'analyze a tilted rno.nocone on a gfou‘nﬁ plane, set up the

coordinate system and the notation as shown in Figure 2.. The ang_le

of the axis of the monocone above the ground plane will be denoted by

‘o and the haif_—;mgl’e of the monocone itself will be denoted by B. A - '

spherical coordinate system will be used‘ The pole of the ephericaifﬂ
- coordinate system lies along the prOJectlon of the monocone axis on
the ground plane. The ¢ '= 0 plane is the ground plane. Clearly,_
this coordinate VSyste'm, the equat.io'r'l of the surface of the monocone

becomes
cosf cosa + sin® sina sing = cosf® _ . (1)

The.characteristics of the TEM mode wave pr'opagatioﬁ along .
the transi’nission line made up of the monocone. " The ground plane can
be determined by solving a surface. Laplace equatlon over a spherical .
surface orthogonal to the direction of wave. propagatlon The surface
Laplace equation over a sphere can be reduced to the usual two dimen-
sional Laplace e_qtiation by the method of stereographic projecﬁon (_see;

for example, references 2 and 3).

Putting the above statements into more precise form, it can
be shown {for example, in reference 2, Section 14, 07) that the TEM
mode electric field in a conical transmission line takes the form

*ikr | |

r

E=5—qU®,9 @)

2. Smythe, W. R., Static and Dynamic Electricity, McGraw~Hill Book
Co., Inc., New York, 1950. '

3. Baum, C. E., '"The conical transmission line as a wave launcher

and terminator for a cylindrical transmission line', AFWL Sensor

and Simulation Notes, Note 31, January 1967.

12
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Figure 2: Monocone notation and coordinate system
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. where a time dependance of the form 6 ™ has been suppressed and
k = w/c. The magnetlc field correspondlng to the above electric field

-is given by

Ly XelTT .
E_. Z r ErWtU(e'cp)' '
8]
_‘_eﬁkr' ' | o o
= —2—1-_ VtV(B,cp) . _ : - (3)
In these eq'ué.fior_ls Vf".is a transverse gradient given explicitly by
= tamw o )

The combmatwn U+1V isan’ ana.lytw function of the va.r1a.ble
e' ta.n(@/Z) ' This fact can be used to set up an equlvalent cylmdrlcal
transmission line for which the cross- section coordinates are

1

x =cos® tanb/2 , vy =sinptan 8/2 o 5)

This amounts to a ste_reographic_projectibn. If we can .determine the
characteristics of the equivalent cylindrical transmission line formed |
by stereographic projection of our conical line (i. e., if we can solve the
two- dlmensmnal Laplace equation in the projected plane), the properties
of the conical line (for example, the equations of the ‘electric and mag-
netic field lines) follow from simple tra,n_sforrna.tmns. In particular, it .
is easy to show, using equa.'t.:ions {2} and (3), that the characteristié_. im-
pédances of the conical line and its equivalent are equal. The defermina-
‘tion of this characteristic impedance will be our first calculation. This

- calculation appears in reference 2, but we will present it here because
we will need to develop it further, a little later, in order to obtain the -

equations of the field lines.

The equation of the ground plané, ¢ = 0, becomes in the pro-

jected plane, according the equation (5)

y' =0 (6)

14
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The.equ'a;tion of the monocone, given as equation (1) becomes in the

'”p'rojected p.l_ah'e,' where p2 _ XI.Z + Y,Z’
1--02. cosd+2_51___g_ Psmq:-cosﬁ SR _ e

L+p" - 1+p

which, by simple algebraic manipulation can be rewritten

2 ﬁ

PTER T mZeR s =RT ()
where
o sing i |
Py = cosP + cosa. | . B | : (9)' |
and.

R o sin8 - - o (10)

' Equation (8) is the equation of a circle of radius 'R"'w_he_s'e center is on

the y'-axis and at a distance P, from the origin. But equation (1) can
be thought of as the equation of any circle on a sphere and so it is seen:
that circles transform into circles by stereographm projection. This
fact w111 be very useful a little later when we come to plotting field
lines. For the moment, however, we are only interested in the fact -
that our-monocohe-groundplane conical 1ine.ha.s tra..nsformed-into a
circular cylinder above a groundplane by stereographic projection. - 'I‘he

characteristic 1mpeda.nce of such a structure is well known (see, for

mexa.mple, reference 2, Section 14, 14) to be

Zo -1 (po) '
‘Zz.zﬂ cosh =) | : : .(.11)
According to our previous discussion this is also the impedance of the

monocone. If we substitute the monocone parameters using equations

(9) and (10), and if we also say Zo #1207 we obtain for the impedance

15




we desired to éalcﬁlate, Ll e e v
. Z =60 cosh™! (sina/sinB) - _ S o (12)

This function of @ and B is tabulated in Table 1 for B = 5°(5°) 50° and -

a ;—._.50(5(_)) 900 where, of course; a tnust be gréa.tér than B.

Thé_reqiiired_ o to give a certain impedance, Z, when B assumes various
valuéé, is given 'in Table 2, where missing values are unrealizable. |
Th__e pé.r:‘a.-meter'.ra'ng.e is B = _50(50) 50° and Z =10(10) 180 ohms. ' The -
equation used to calculate Table 2 comes from a 'si:.rnple'fli:p of équa; _

tion (12) and can be written as
o= sin-1 ;SinBCOSh g%-i : o o (1.3).

The impedance data is also displayed gra.'phic’:allﬁ' in Figure 3.
As can be seen from Figure 3, the Z(a) curves have vertical asymptotes.
as o approaches B and horizontal asymptotes as o appeoac_hes 90°. This

can also be seen analytically by differentiating equation (12) to give

dZ 60 cosa '
S = — ' o ‘ (14}
_dq '\’si'nza - sin°B S ' . ' ,

An‘inter_est':ing poiﬁf about this data is that,' in order to obtain

'irx.apedances of around 150 ohms, one needs a.half—cone angle of less _
than 10 degfees.- With a 30 degree cone the impedance is less than 80

ohms. -
2. : FIELD DISTRIBUTION -

We now turn to determining some of the properties of the
electric and magnetic field distributions over a spherical surface. .
From what we have already said, it is clear that the TEM mode fields
lie along concentric spherical surfaces and can be found by an approp-

riate transformation of the field lines of the equivalent transmission

16
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145.9
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1167.0
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"TABLE 2 .

© Required « for a Given Z and B (Z in ohms)
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" line. From an examination of {:he tWo-cylinder transmission-line 901ue
tion, it can be seen that all mornocones that tzransfo\rrn into cylinders
| having the eéme pole pos'ition (i'e the same position of the effective
line cha.rge w1th1n the cylmder) have 1dent1ca1 field distributions. There-
fore, we can economize in our data presentation by plotting the fields
- with only the pole position (when transformed back to the sphencal co-

ordinate system) as a parameter.

'I'he constant -V lines are g1ven, m the prOJected plane, by
(reference 2, Section 4. 13) '

_pZ- - 2ap cosw cotV = a? o o (15)
where the pole is at 0 +ia. If this pole is the projectidn of a conical
pole at (6= gp, © =12), equation (15) can be rewritten as

2 2

v
where'cpo isgor ™™, aceording fo whether'cotV is greater 'or. less than

zero, and

8 -
P, = tal_l(—-z‘&) cotV (17)
'sz-t.ar > cscV (18)

Equation (16) represents a circle and so, from our previoue demonstra-
tion that circles transform into circles by a stereographic projection
or its inver_se,_we can say immediately that the equation of the V lines

on the spherical surface is given by
cosb cosEiv + sin® smevcos(cp-cpo) = cOs Yv _ - (19)
where (ev,cpo) are the angular coordinates of the center of the circle on

the sphere and Y, is the angular radius of that circle. To determine

-ev and Y, We can note, from the analysis leading to equation (8)

20
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and (9) that =

s1n8

R COSY +c089 =

s1n'Y

cosy + cose

- (20)

Solvmg these equatlons for 9 ‘and Yo in terms of pv' and 'R'V we obtain,

o a.fter a 11tt1e algebra, :_ -_

ta-l‘.le‘.r='-2p.v‘.u .
2 _ g2
Py v
and -
- tany_ = - 5 A4 5
Yooy  -R O+

'br, 'sﬁbs"tituting the values of pv égnd Rv fro.'rn equaticns (17) and (18)-

tanB = sin ’cot Vl
v P

tany = tanf [csc V!.
. v - P

When these values of 9 and Y are used in equatlon (19) the result,

after a little s1mp11f1cat1on, is

cosfh = cosf'—\p - sine_pcot V sinb cos®

" where we have used the fact that

’cot V, cos(cp-coo) = cot V cosyp

In a manner precisely analogous to our develdpment of equa.-'

tion (15) into equation (26), we can proceed from the corresponding

21
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equation for the U lines in the projected plane,

pz - 2ap sin_“-péothU ra -0 _ _ S (28) .

to the fbllo‘wing ':equ'ation for the U-lines in the (0, %) coordinate system
cosb cosElp =1 - sinep coth U si_nesinﬂp ' (29) -

The ?rébléfh of a decent pictorial representat.ion.of the ihfoi‘-_-
‘mation contained in equations (26) and (29) now arises. One possibi‘lity :
would be a polar plot on a {p5%') plane, where p' =.8 and'ca' =} of the
. constant U and V lines. Another possibility would be some sort of
Mercator projection of the spherical surface. We have chosen, however,
for reasons of simplicity (and hopefully for reasons of maximum iﬁ-—
sight), to draw the field lines as they might actually be viewed from a
given direction. That is to say, imagine the constant U and V lines to
be painted on a spherical ball. Now look at this ball in a direction parallel
to the projection of the monocone axis on the ground plane and toward the
apex of the monocone. The result will be the pictures ShOWI;l as Figures 4
through 9 for § = 15°(15°%) 90°. ‘ |

- The equations for the U and V lines in these pictures are easily

- derived. - In fact, using the relations

- x = 8inb costp o _ L (30)

-y

-

sin® sineg _ S . e o L (31)

equation (26) reduces quite readily to

_x-xvi Y2
. + X =1 (32)
v a
v
where
.8inB cosB - sinV cosV
T 2 Ez 2
V. 5in“V + sin ep cos“v ' - (33)
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sinf sinVv
5

L (34)

v -.si‘nz__\\/’ + sinaep 'c_pszV_ o
v 2 2 2. -
4810V + sin chos v o
- Similarly, equation {29) becomes -
L2 ly-y) - O
St = S (36)
a. b . : _
v . v

where
sinéé sin hU cosh U

u sinze‘ + sinth S S - (37)

sir;@p'clos Bpsinh U

38)

CuT o2 0+ innZ v ; e (
ind
Soo sin®, . L | o
\/sin 8 + sinh™ U o _

Thus, our view of the constant U and V 11nes yields elhpses
This is clear a priori since we are viewing. circles at an angle. The
parameters of the ellipes are not clear a priori, but they are given by

the above equa.tmn S.

Let us examine Flgures 4 to 9 The range of V is from
0 to 21 We have plotted the constant V lines for V = 0(n/12) 27 , t.e., |
at jumps of 15%,  The range of U is from 0 to 7. We have plotted the
constant U lines for U = 0 (12},  The V lines are lines of electric

field. The U lines can be thought of either as lines of magnetic field

29




" oras equipof:'entials for the electric field. The pictures can be used for

any monocone whose surface intersects a sphere along any of the con-
stant U lines gwen The correspondmg monocone 1mpedance is easily |
shown to be

Z=60U" S | - (40)

and it_s'.d' and B .a.'ngl"es follow from the equations

" tana

‘tanB .sinep'CSChU : ' . (42)

A juggle of the above three equatiens leads_ back to equation (12).

_ In Figurres 4, 5, and 6 we have plotted the continuation of the
U and V lines on the back of the visible sphere as dotted lines. In the
other three pictures we have not done this as it would result in too big |
‘a confusion of lines. From equation {29) we see that the U lmes slop

over onto the back (invisible) half of the hemisphere if

tanh U < sing_ _ ' - (43)

Slmﬂa.rly, from equation (26), the V-lines d1sappear behind the edge of
_the v1s1b1e portmn of the hemisphere if
V<8 or V>2m-8 o (44)
B ] b : R : : : .
Another interesting point about the pictuﬁres is that, since we
know that half the electric field lines fall between the V = m/2 and
= 312 lines, it follows from equations (2. 32) to. (2. 35) that half the
electr1c field lines in the pictures fall within the circle whose center is
at the origin and whose perimeter passes through the pole. The pole

angle for an arbitrary monocone described by @, B parameters can be

easily determined from

30

tanep coth U R : _ e R (4'1.)"_.




cos® = cosa, __ C
' cosB . (.45):.'
"There are various other quantities one could calculate from
the formulas a.lready presented T We w111 restrict ourselves to one more
the ra.t1o of the electric field at 8 = 0 to the electric field at 6 = 1 This
ratio ca.n be thought of as a rough measure of the effectweness of the

monocone in directing energy in the forward direction. From a differ-

entiation of equation (29), the ratio is g'iven by

aul : qul g

- dé .8:'-—-_0 , aﬁ 8 =m ':cot..._é‘R'__ L o g (46)
w=m/2/ w=m/2 o R T
3, BACK RADIATION

_ The fmal topic we will treat in this sectmn 1s that of back
rad1at1on, i. e. , what fraction of the total power radiated is within a
given solid angle _m the bagkward direction. The total power_rad1a.‘ted' -

within any solid angle ) is given by

P;%f(ExH*).e dn o "(47).
: _— - -r ) )
: }

[0}

where the integration is over a unit sphere. In terms of U and V this

- power can be written as

Pl f (VUxW).g 40 | - (48)
Q

o

But, using a standard surface integral theorem (see, for example,

reference 4, page 509), the above integral can be transformed to

P:%E fUaV s ' (49)
o - ak : :
c . :

4. Van Bladel, J., Electromagnetic Fields, McGraw-Hill Book Co., Inc.,
New York, 1964. :
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,-.“_-"_‘_:AV equatlon (49) gives. 1rnmed1a.te1y

all pcs-"ihfs* and df is

... where C is the contour containing Q_ on its left

._ the unit of length along this contour. Within anQ defined by two 11nes - U
of consta.nt U differing. by AU.and two,. 11nes .of; consta.nt V d1ffermg by .

(50)

R ER e sepeirebes e PR Rier e T pr e w ol TR R T Ly

In partmular, for the total rad1at1on AU is the dlfference between the.
monocone value of U a,nd zero, its va.lue on the ground plane, while

| AV is 2w But we know from equat1on (40‘) =i:ha.t: on the mono_cone Uis
“Thus, w1th
- our normalization, the total power ra,d1a.ted Pt’ ‘can be written as

z/60 wh1ch from equa.tlon (12), is Jusﬁ sh (51n0./s1n6)

.ZZOPt = 2T cosh_l(sinc&/sins). - o o (5'1)l

Now 1t 1s qu1te stra1ght forward from equat1on (2 49) a.nd our _previous

' equatmns for U and V to wr1te the power ra.d1ated in the cone confamed

ffbetween 6 = e and 8 = (assummg the back rad1at1ori 'cone does not

P

1ntersect the rea.l monocone, i.e., that Gb > o+ B) in the followmg 1nte-

.gral form

1 cosf -cosh T e
2Z,P 7 2 b j ik Shl -1-“(1 v (ep’.e’)dcp (52)

. where

sin® sineb sin¢

l1-cos8 cosB
B

F(eb,@) = (53)

b

' Equation (52) is in the form of a tabulated integral (reference 5, page 593)
and so, carrying out the integral, substituting for ep in terms of a and

B, and simplifying, we are led to

5. Gradshteyn, L S., and I. M. Ryzhik, Table of Integfals, Series and
Products, Academic Press, New York, 1965.
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o : cosB - cosa c;)s.eb. o T R
2Z,Fy, = min - — o . . (54)
2% Neesw-cosBeos8 f .

- Thﬁs, thé"fracfional-poﬁvéf- raﬁdiat_e'd iﬁ'_thé"ébn’e 'BeWeen 6 _="9.I:")'a.n'd g =" -

is just -

B o (LosB- cosa c'os_eb). B
b - % | ln \cosa - cosB coseb o - (55).

'cosh'l(sina/sin's) o

" This is the back radiation that would oCcﬁr'-if our monocone were

. infinite. Since it is attached toa structure that tends to direct even more

of the energy _forward' (by virtue of hair_ing‘an effective o less than the

monocone @) the actual back radiation would be somewhat less than that

‘given by equation (55). Nevertheless, it is of interest to note that for
8, = m/2 and reasonable values of a and B, equation (55) predicts back -
radiations of the order of 10 to 20 %. |
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SECTION III

ZERO-NET-FLUX CAPACITOR-ARM CONFIGURATION = O

This section determines those positions of the four peaking ca-
.__.'pa-c'itc.vr arms of the pulser sectibn such that no net flux links én_y pair of -
arms éither in _the.lchargi'ng stage, when all the return current flow:s
_th.roug'h‘ the Mai‘x generator, or in the dis charging stage, when all the
‘return current flows in the ground plane (image conductors). The_se twd.
condi_fi_ons on the__return current are not exact, but they are good approx-

imations.

_ We will consider only the cylindrical transmis sion line approx-
imation to the problem. The errors introduced by the actual tapering of
the capacitor-arm spacing are small if we use a cross section near the
middle of the arms as the cross seéti'on of our cylindrical line. A brief

discussion of this type of error may be found in Section IV,
1. . MARX RETURN CURRENT

The first case we will look at in this section is the one where the
four capacitor arms carry equal currents and all the current returns
~ through the Marx. This situation is shown in Figure 10, which also gives

the rotation we will use in discussing the case.

It can be seen that what we have p_ictured in Figure 10 is actually
an upside-down view of the Marx-capacitor-arm cross section, It is less
awkward, notationally, to discuss the problem in terms of the coordinates

of Figure 10 for the case when the Marx generator is present.

We will immediately assume that all currents can be replaced by
line currents at some effective positiqns, for purposes of calculating
fields. The error introduced by this assumption will be discussed brief-

ly in Section IV. It is not great for the case we are considering.

34




“d

QO

%Q‘_l. I K
41/

35




It is obvious from the physics of the problem that the zero-net-

- flux eo’nfigura-tions must be symmet'rical about the y-axis (i.e., the verti-— b;
cal plane through the Marx generator). This symmetry will automatic-- -

-ally ensure zero net flux between arms 2 and 3 and between arms 1 and

4. H, w_hzle preserving the reflection symmetry, we manage to get zero

net flux be_tween arms 1 and 2, the symmetry ensures zero net flux be-~

tween the other 'three pairs of arms (1-3, 2-4, 3-4).

o - Let us, therefore, determlne the flux between arms 1l and 2 _
-.as a functmn of the positions of those two arms, assummg the pos1t1ons a
of the remaining two arms to be determined from symmetry. But the
flux between any two two-dimensional points at distances "a' and 'b"
_from a line eurrent Iis just (uO_I/Z_'!'I’) In (b/a), the direction being de-
termined by the right hand rule. Thus, in Figure 10, the flux between
“arms 1 and 2 due to the currents in arms 1. and 2 .theniselves cancels.

The flux between arms 1 and 2 due to the current in arm 3 is just -

o 2R D
whe.re_‘
dslz's (x'.1 +_x"2)2_’ + ‘y'l’\_-. yfz)z L S i t5?)
d. 2 42 (58)

32 2

and the flux goes in the posifive-y direction.” Similarly, the flux due

to arm 4 is

Co L ! 1n/d41)'-- | - (59)

4 2m \d 42

where

dy, "= 4x') , ' _ (60)

2) = dBi (61)




J

and the flux due to the cuflfent m the Marx generator is =

B VL

P2

Thus, for zero net flux between arms 1 and 2, .

In d3]. . d4l =4 ln(i_}__) AT R L (63) ¢
o \ds2 Y2/ o2/ | ) I

‘or, using previous equations for the d's

Gt e\ | - * o e o
x', (p'z)_ ‘ : S S (64)

This can also be written as

COSCD"I_ COSCHZ | . ‘. . . . | . .
;3 - ) - . ) : (65)
pl. p 2 . . .

Equation (65) is the basic condition for flux cancellation with the Marx

_generator present. It can be seen that we can set the position of one

. arm (say arm 1) arbitrarily, but that once this position is set the other

arm must fall along a certain line in the plane of the cross section, - We
see trivially that cp'z = co’l, p'2 = ,p'l is one point on this line, and if we

specify that x'. =2 x'z (no real restrictuion, just a definition of what we

1
mean by arm 1 and arm 2), the trivial solution is the terminus of the

line of positions of arm 2.

We can look for planar solutions of equation (64) by settmg
Y'I:yz_hx —U.hx = o h and obtain

1 2 2
- ' 2 2 .
014 + 2012 | —_—-__.(Gz M I ' . " (66)

%
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a,a, ta, 5 a1+2a2c11-1_,0 S (6?)_

_or,Settihg 'c.x,'l' = onz'z = oz, i.e. z = :u:’l/:v:'z

a

z_. +.z.+(1_+'—_—2) Z - Ty =0 B e . (68)

R « A

-Eque.tion (68} is a cubic equation for the ratic of the x" eo'ordi_nate_s of

the capacitor arms_.fer a given x'z/h.' .As such it of course possesses
a.lgebra.ic solutions, but these are a little messy. A table of its solu- T
tion is. given as Table 3. We note that, for equation (68) to have a eoluQ
tion for z>'1 (Wh1ch is true by def1n1t10n), the rlght hand 51de must be

less than zZero for z = 1. Thus,

34+2/a% -1/ <0 o : - (69)

| x'z/h =g <-1/J'3_-“: o - . N (70)

More generally, if y! 1 #y! 2 we can st111 use y, as the unit -
- of length and write the trajectory of arm 2, by manipulating equatlon (64),

-in the parametric form.

syt g2 B %)
. L2, .4\ o o '
y2={x1 (t-t7) + ¢ . _ L (T2)

These equations have been used to plot the arm 2 trajectories of Figure 11
and 12, In these Figures, the notation is the same as that of Figure 10
and arm 2 can lie along any of the given curves if arm 1 lies at the terminus

of the: curve.
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TABLE 3

.19

x'z/h x-'.l/h.
. 001 19.993
.01 | 4.495
02 | 3.49
.03 3.002.
.04 | 2,684
.05 2.454
.06 - 2.276
.07 2.132
Jo8 . | 2.011
.09 1.908
.10 1.818
.11 | 1.738
J12 ) 1,667
.13 1. 603
.14 1.545 .
.15 1.491
.16 1.441
17 1.395
.18 1.352

1.312

"/h

‘Planar Solutions With Marx Returns

x',/h _x'i/h
.20 1 1.275
.21 1.239
.22 1.206
.23 0 1aave |
.24 1,144
I.25 1.115
.26 1. 088
.27 1. 061
.28 1.036
.29 1.012
.30 | .990
.31 . 967
.32 . 946
.33 . 925
.34 . 906
.35 . 886
.36 . 868
.37 . 850
.38 . 833
.39 .816

39

. x’z,/h x'l./h'
.40 . 801
.41 . 784
.42 . 769
.43 .| .755.
44 . 740
. 45 . 726
. 46 .713
. 47 .699
.48 . 686
. 49 . 674
.50 . 662
.51 . 650
.52 . 638
.53 ] .626
.54 | .616
.55 . 605
.56 .594
.57 | .584
(3)72 1 3)7% |
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2. - IMAGE ARM RETURN CURRENT - o
G Let us now turn to the second case of flux canc.:ellation:--—th.e.'
..return current flowmg in image conductors. The situation now is that
shown in Figure 13, where we have returned to a right-side-up coordin-
ate system. This coordinate system leads to the mmplest looking equa-

.t1ons for the present problem.

Agaln, symmetry about the y- axls must prevall For this

case we will det.errrune the null-flux trajectory of arm 2 {(for a given =
- position of arm 1) by treatmg the completely equivalent electrostatic
problem of finding the arm 2 trajectory that keeps the potentials. of all
arms equal while (since equal currents are assumed to flow in alll'capaci-
tor arms) at the same time keeping the strengths of the line charges
‘representing the capacitor arms equal. The electrostatic approach to

the present problem will be used because’ somé of the formulae will be:

useful later in calculating characteristic impedances.

In general, the potentials of arms 1 and 2 in Figure 13 are .

given in terms of the strengths of the line charges by
. Zﬁeoml- = q {ln\(dls/a) + ln(d-lé/dl4)} +.q, {]‘n(dléldIZ) + 1nA(dl7/d13)} ] (73)

_Z_ﬁeocpz.= q;{In(d, /4, ) +1n(d,./d,,)} +q, {Inld,,/a) +1n(d27 23)} (74)

where ''a'’ is the radius of the capacitor arms and the "d's" are distances
between arms, the subscripts giving the particular pair of arms. Now

if Py = coz and q; =9, the above equatmns can be combined to give

Ind +1n(d18/d14):1nd

15 ° 6+1n( /d..),

p 27 7237

-d

~ where we have used the obvious geometric relations d _d16’ 28=917,

etc.
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Téking the expdnential_ of equation (75), we have

disdyg  daedr B
. I E o O (76)
dia Y23 y | |

'Subsfitutiﬁg the coordinates shown-in Figure 13, and simplifying, ‘equa-

tion (76) becomes

o

=z 5T
YINFL T Y NR Y,

_.'x'l o Xq

an

or
pl'_ta.ncca1 =.p, tang, o | . _ (78)_.

.Again, for‘a Agiv.e-n pos.itio.n.of arm l., we have a traject(l)r.y'alzo'rig which i
~arm 2 can lie and have zero net flux between any pair of the top four
arms of Figure 13. There are no planar solutions of equation (77). If

- we again choose ¥ as'tjhe unit of length, l’the' equation for the null-flux

trajectory of arm 2 can be written as
o2 2 2.-3 o =
X, =y, {141/x7 -y, ¥e . N (A0
Plots of typical trajectories are given in Figures 14 and 15.
3. COMBINED SOLUTIONS

We have now found the null flux trajectories of arm 2 for the

. two cases of return current. We must next find the bbint satisfying
bbt_h null flux conditions. For a given position of arm 1 this peint (if

it ei:isfs at all for that particular position of arm 1) will be the inter- -
section of two trajectories. The coordinate system we will use in find-
ing. the combined solutions is shown as Figure 16. The height of the
Marx generator above the gi-ound plane has been chosen as the unit of

length.

44




91 ¥ "1 A

I

x.wn.._m. u._nom.onm_ sefewt udYM XNy TNU 0¥ mu.._n_o“umﬁ.mﬁ N..En.,q« i$1 o2andig

ﬂw\nx

[+.0)

;
°
.
Nl

L—""%/s

] ] |

I 1 I

- ) u\\./

,.,/l\




o
; b

.,,.,.!.‘\‘,

ow.ﬂ....ma Ty vr_m__,_u_no_monm sofewn uaym Xn[y [[nu I0J sa1I0defer; 7 wixy i¢[ 2andtg




“FMarx

ground pléne

Figure 16: Coordinate system used in finding combined solutions
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Let us set th_e position of arm 1 at(xl,_ ‘yl). Then the r'_iu}.l flux
‘condition with the Marx generator carrying the return current is given, ' : U .

transforming equation (64) to the present notation, by

*2 - Xl'r-.,. -
2 212 ° 2 335 =8 ‘ S (80)

where g is defined by the position of arm 1. The null flux condition with

image currents present is given, from equation (77), by

2

2 v.4\ 2 S
Y2 1+—37_-=y12 1+71 \=¢ B o (81)
%, XZ :

Solving eq.ilatio'ns (80} and (8'1) for Y in terms of 22, g, and f,. we

obtain
_' '\/x . 2 % R :
y2 =1 "{ .._.é - Xy } ' (82) PG
' N
e ® et % - S
o 2 2 2 _ : 83)
Y2 = > S (
Equating these (nebeésaril-y'equal) valués'_of V2 results in
1
2 1
4 2 F
‘}2 2 I -!:}cz + 4x2 f _ : a4y
g - XZ 2 - ( )

By sufficient squaring and transposing, equation (84) can be changed
into a polynorﬁial.equafion for Ko But this is not necessary, or even
advisable, for purposes of numerical solution. The equation can be
solved numerically as it stands. Once it is solved, ¥, can be deter-
mined from equation (82) or (83). Figure 17 was prepared in this man-

ner. In preparing Figure 17 it was assumed that vy is between + and 1
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. while‘ Xy is less than 1. Any practtcal é,rr_n config'uration.shc.)'uld fail Weil
within these limits. To use Figure 17 one must fir’st'd_ecideuon an x,
and Yy Then pick out the labled curves in the picture that correspond
most closely to the real Xy and Yy (or extrapolate between curves for

more accuracy) The intersection of the xl-curve and the yl-curve '

glves a po1nt whose coordlnates, as read from the bottom and 51de axes ...

of the figure, give Xy i and Ya- For example, if x i is .5 and yl . 95

we obtain : X, as . 22 and Y, as . 65.

In Figure 17, arm | must lie to the right of the marked bound-_ o

ary line and arm 2 must lie to the left of it. The equation of the bnund-

ary line can be derived from equation {84) as follows. Equation (84)

must have a solution (a trivial one) for %, = X;. It can only have a sec- |

ond solution (the one of interest) if the left hand side has a negative
derivative.at Xy = X4 since the left hand side goes'to zero at Xy = 0.

If the derivative were positive there must be an even number of solu-
tions other than Xy = X since solutions arise from the oscillations of
the left hand side about unity. From the previous trajectory plots it
is clear that the'r'e.is' at meet one intere_sting solution and so we are -
‘led to the negative derivative condtion. By performing the required -
differentiation of equation (84), setting Xy =X and substituting for _
f and g in terms of x, and y; we are led, after a little algebra, to the .

cond1t1 on

. _ 1
2 2 ¥ 2 272 2 2

6

xlz

r;'[‘he boundary line of Figure 17 comes from taking the equality sign of

 this relation.

There is one more topic we must treat in this subsection and

| tnat is the determination of the characteristic impedances of the null
flux co'nfigurations.of Figure 17. But the characteristic impedance can
be determined from the capecitance per unit length between the four

arms and the ground plane by

50
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CE L2
s :
- while the right hand side of this equation is cléarly given by -

_ ._'Whéx'-e_'ﬂpl' is the potential of arm 1 and q is the charge per u'riif:._.l"éngfh"dn" R

each arm. Thus we find, from equations (73), (86), and (87).
1

2
2 81
o

Substituting in this equation the va_lués of the d's in terms of

.:_:1., Vi» xz,_:yé‘and_ using the height of the Marx genér‘ator, h,_ as""a léngth

unit for these quantities we are led quickly to

Z =15 In(h/a) + Z | N (-1 )
where Z, the part of the impedance depending on the relative positions
of the capacitor arms, is given by

2

= o ln(dls/a) + lg(d'is/dlzi) + 1n(d16/d12)“'f|-'_lh(dl7fd1'3) ...(.8'8) :

.(:-:1 +x2 )+ (y'l +y2)‘ ,

| | - 2 2 |
Z, = 151n2y, + 7.5_1h:1 4(_?_5) } by-x,) Ty *yy)

*1 ("1"‘2’2 +.(Y1-Y2)2 &, “‘2)2 tlyy-yy)

Equation (89) should be easy to use when h, a, Xy, and y, are decided

. upon. The value of h in the real case can be taken as the height of the

center of the Marx generator about the ground plane and '"a' is the
effective radius of the capacitor arms. Specifying %] and Y1 determines
X, and Y, by the null flux condition, and so Ze can be thought of 48 a
function of %] and Yy alone for the configurations we are interested in.

Numerical values of this function are given in Table 4.

51
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TABLE 4

Ze—configura.tion,dépendant péart of capacitor arm charactéristic .impédan-c':_.e ‘ l\/'
Q}\yy L |-95 [.90 .8 .80 [.75 |.70 [.65 |60 [.55 |.50

. 05| 184, 3

©.10.| 143.2

.15(119.3

.20|102.7{123.3 _

.25| 90.3f 98.2{141.6

30| 80.3] 84.1] 91.4] 1247

.35] 72.2} 74.0| 76.8| 81.9 [95.4 o

.40 65.4] 66.2] 67.1| 68.8 |71..1[76.0 [89.3"

(45| 59.6/ 59.61 59.6 | 59.7 {60.0 [60.5 |61.4 [63.2 [66.8 [73.9

.50 54.6] 54.2| 53.7| 53.0 [52.3{51.4 |50.5 [49.5 |48.4 [46. 9 45.2j

60| 46.4] 45.5| 44.4] 43.1 [41.6 [39.9 (38.0 [35.9 [33.4 {30.7 [27. ¢

.70 40.1| 38.9] 37.5| 36.0 |34.3 {32.4 [30.3 [27.9 25.4 [22.5 {19.4

.80 35.1f 33.7| 32.3| 30.7 |28.9 [27.0 |24.8 |22.5 |20.1 [17.4 |14.4|

.90 31.1} 29.7| 28.2| 26.6 (24.8(22.9 {21.2 {18.7 [16.3 {13.8 [11.1 (L
1.00| 27.8] 26.5{ 25.0| 23.4 121.7|19.8]17.9 [15.8 |13.6 |11.3 | 8.7
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SECTION IV

DISCUSSION OF SOME DETAILS

In this section we will pick-up half a dozen loose ends _fhat h'é.z.vle"

. been le'ft.hangihg 'up to now because of our primary purpbse ‘of getting to.

final results and presenting data with as much dispatch as possible,

Each of the following six paragraphs discuss one of these loose ends.

F1rst, in the analysis of Section II'we have assumed an infinite

-ﬂat fround plane.. Real construction limitations may require the groun_d _

“ plane in the neighborhood of the apex of the cone to be somewhat tilted.

(we are not speaking here of the general slope mentioned in Section II,
but of a much smaller region near the apex). 'The ground plane may-
have to be perpendicular to the axis of the monocone near its apex.

Nevertheless, the transverse extent of the perturbation of the.ground

plane should be quite a bit less than the length of the monocohe and

S0 the overall characteristics we have calculated (1mpedance, field

dlstnbutwns) should be accurate. Our neglect of the perturbation of.

. the ground plane__ is no more serious than the other idealizations that

were necessary to make the analysis at all tractable.

Second, the finite cross sections of the conductors carrying

the current in peaking capacitor section of the pulser have been neglecfsed

in the analysis of Section III. We have assumed line currents. . The

most serious consequence of this assumption would be in the calculation
of the field due to the current in the Marx generator in Section IIL 1. |
But even in this cé,se, a simple analysis shows that the. relative error
in the flux between arms 1 and 2 due to the Marx current is at most of
order (m/rl)z-/ln(rl/rz), where m is the effective radius of the cross-
section of the Marx, as long as we choose the " effective position' of
the line current representing the Marx current to be at the geometrical
center of its cross section. Even this relative error is of order 10%
or less but this is further reduced by the fact that the current in the
Marx is, at least approximately, uniformly distributed about its axis

and for axially symmetric current distributions there is no error at
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all in calculating the fields by assuming the entire current to flow in

a line along the axis.

Thlrd we were faced w1th a problem in calculatmg the char---

acter1st1c 1mpedance of the capac1tor arm sectlon in Section IIL 3. The

. arms do not really form-a cylindrical transmission line since they must’

ta.pér apart as they go from the monocone to the upper transition sec-
tion, -and yet they do not form a conical line since the arms themselves

are of uniform radius along'their length. The calculation \}vas made by

assuming a cylindrical line whose cross section is the same as that of

the real line at some point (say half way) along its le'ngf:h. This seems
to be a good assumption for at least two reasons. One reason is that -
" no matter what point along the line we calculate the impedance at (i.e.,
no matter which point along the line we choose to &efine h, the height’
of the Marx in equation (89)) we obtain, for the kinds of geometries and-
impedance levels contemplated, an impedance within 3. 5% of the value
calculated at the half way point. Another reason is that, if we define a
conical line-_.by tapering the arm radii as well as their spacing from the
midpoint of the arms back to an apex, we obtain an impedance yvithin'

4% of that calculated under our cylindrical line assﬁmption.

Fourth, the capacitor arm radii are not too well defined be-
cause these arms are not perfectly conducting rods. We should really
speak of an "effective' radius of the capacitor arms. But the effective
radius should approximate the geometric radius (it will be a little .
'smaller) and an error of even 20% in estimating this pai'ameter will .
result in an error (when used in equation (89)) of less than 2% in the

1mpedance of a 140-ohm line.

Fifth, we have spoken little of minimizing the dispersion due
to the transitions between the various sections of the pulser and simu-
lator except for our overall, and necessary, criterion of uniform char-
Iacteristic impedance along the line. In addition, we should minimize
the diiference in curvature of the wavefronts on the various sections by

sloping each section as little as is consistent with other requirements.
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: (eventually we are feedlng 1nt0 the zero slope parallel pla.te region).
We had th1s in mmd in our d1scuss10ns of the field 11nes in Sectmn IL 2.._

As a m1n1mum, we should try to keep the length along the upper con-
o ductor up to the parallel plate regmn, W1th1n ten feet of the length of
i _the ground plane up to the’ parallel pla.te reg:on '

Last xmperfect 1mpedance matches. between the varmus

"sectlons of the pulser and simulator will change the mput 1mpedances
... slightly from the characterlstm 1mpedances tha.t have been calculated

~in this report. - But this is prec1se1y the effect that W111 be mm1mlzed

by keeping the cha.racter1st1c 1mpedance umform throughout the struc-

ture. From the data presented in Sections II and 111, it should be pos=
sible to- arra.nge a pulser geometry such that m1smatches between its -

- gections are well below an a.cceptable 1eve1
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