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Abstract 
 
Previous considerations have concerned the design of a sample holder shaped as a finite-length circular 
cylinder. The present paper considers an extension to a cylindrical shell. This gives some advantages in 
matching the pulse into the biological sample (solution), provided the conductivity can be raised. 
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1. Introduction 
 

A recent paper [1] discusses techniques for exposing biological samples with very short pulses ( 
100 ps of so) in a coaxial sample holder. The switch with charged capacitor is at one end with the sample 
at the other end. The pulse is so short that the wave-propagation properties of the sample holder and 
sample configuration are important. 

Using a saline solution with  
 

  𝜀𝑟 =  
𝜀𝑠

𝜀0
 ≅ 81  (relative dielectric constant) 

          (1.1) 

  s = 0.3 S/m  (saline solution conductivity) 
 
a cylindrical test sample centered on the body-of-rotation axis had some problems matching the 
resistance of the sample to the coax characteristic impedance, Zc. Noting the relaxation time of the 
sample medium as 
 

  T = 
𝜀𝑠

𝜎𝑠
 ≅ 2.3 𝑛𝑠       (1.2) 

one observes that in the times of interest the medium looks more like a capacitor than a resistor. 

Instead of a fat (large diameter cm) sample, one might make a very narrow (but still a few cm 
long) sample, to allow the field to penetrate the sample in times of interest. However, this gives a 
resistance much larger than Zc.  

The present paper investigates another sample geometry based on a cylindrical shell. 

 
 

Fig. 2.1  Cylindrical-shell test sample. 
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2. New Test-Sample Geometry 

 
Consider another variation of the test-sample geometry. As in Fig. 2.1 this consists of a cylindrical 

shell with  
 

a = outer radius 
d = inner radius 

= a - d = shell thickness       (2.1) 
l = shell length 
b = coax outer radius. 

 
This can be compared to the cylindrical sample in [2, (Fig. 3.1)].The Brewster angle for matching E 

(or TM) waves into the sample is 


𝐵

= arctan 𝜀𝑟
−1

2  ≅ 6.3°        (2.2) 

 
Note that for small (b – a) compared to a one can make a plane-wave approximation for guiding the 

wave into the cylindrical-shell sample. Keeping the Brewster angle  B, the sample length is 
 

  𝑙 =  𝑏 − 𝑎 𝜏0𝑡 𝐵 =  𝑏 − 𝑎 𝜀𝑟

1
2 

 

      9[b - a] 9                                    (2.3) 
   
 

As discussed in [1], the characteristic impedance of the coax taper from its full value to zero at the 
end of the sample has  

 

  
𝑑𝑍𝑐

𝑑𝑍
 =  −𝑅′  −

𝑍𝑐

𝑙
      (2.4) 

 

  𝑅′ =   𝜎𝑠 𝜋 𝑎2 − 𝑑2  
−1

 

 
  =  𝜎𝑠 𝜋 𝑎 + 𝑑 ∆ −1 ≅ [𝜎𝑠2𝜋𝑎∆]−1 
 

   resistance per unit length of “terminator” 
 
If 
 
  b – a  << a       (2.5) 
 
then we have approximately 
 

  𝑍𝑐 =
Z0

2
 ln  

b

a
  = 

Z0

2
 ln  1 +  



a
                                                (2.6) 

 

          
Z0   

2



a
  60 



a
  

 



4 
 

  Z0  377 wave impedance of free space 
 

From the foregoing we have  
 

  𝑍𝑐    
Z0   

2



a
  60 



a
  9 s 2a −    −1 

 

60s 2a −      9a                                                                     (2.7) 
  

[2 - 


a
]  

3

20
 s 

−1 

 
This quadratic equation has the solution 
 

   = 
a

2
 [2 ±  4 − 4  

2

a

3

20s
  

1

2

] 

          (2.8) 

      = a [1 ±  1 −
3

10as
 

1

2] 

 

Looking for small (compared to a) gives 
 
   

 = a [1 −  1 −
3

10as
 

1

2]                               (2.9) 

 
For a real solution we require 
 

s a ≥  
3

10
  0.095   Siemens                                     (2.10) 

 
For a conductivity as in (1.1) then we have 
 

  a ≥ .31 m (or 12 cm)     (2.11) 
 
This is a fairly large radius. At this limiting value we have 
 
  ∆ = a        (2.12) 
 

or a solid cylindrical sample. At this thickness, with a 100 ps pulse (spatial width in water .33 cm) the 
wave will pass through the sample (large) creating a non-uniform field distribution in the sample. Of 
course, one could increase a yet further (over the (2.11) value). The asymptotic form (of (2.9)) for large a 
is  
 

  ∆ ≅  
3

20𝜋𝑎𝜎𝑠
       (2.13) 

 
Increasing a would decrease ∆, but to make ∆ smaller than the spatial pulse width would make a quite 
large. 
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3. Increasing the Sample Conductivity 
 

One way to decrease a is to increase s, say to  
 

   s S/m  (sea water)     (3.1) 
 

In this case the relaxation time is  
 

  𝜏 =  
𝜀𝑠

𝜎𝑠
        ≅ 179 𝑝𝑠      (3.2) 

 
which is approaching our intended pulse width. 

From (2.10) we now require for a real solution 
 

  𝑎 ≥  
3

10𝜋𝜎𝑠
  ≅  .024 𝑚 (or 2.4 cm)    (3.3) 

 

This is a more reasonable number. This is still larger than the spatial pulse width in water (3.3 mm). So 
we might look to a larger a. From (2.13) we have for large a 
 

  ∆ ≅  
3

20𝜋𝑎𝜎𝑠
    ≅  

.012

𝑎
      (3.4) 

 
So we might have, as an example, 
 
  a  = .2 m 
 

  .06 m   (from (4.4))   (3.5) 
 

  .061 m 6.1 cm  (from (2.9)) 
 
This is more practical than the previous case but is still rather large for a. 

 

We would like to make correspond to one or fewer pulse widths in water. This makes a even 
larger. For 

 

  3 mm       (3.6) 
 

then we have 
 

  a  m        (3.7) 
 

This is way too large. To go further, we might increase s beyond that of sea water. 
 

4. Concluding Remarks 
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A cylindrical shell might then be a better model for the sample geometry. However, to get the shell 
thickness down to the pulse width (in water), requires increasing the sample conductivity while still 
maintaining a small sample diameter. The discussion here allows trading the various parameters for 
each other. However, the negative effect of high conductivity solution on biological cells limits the 
conductivity to approximately twice that of the conductivity of a physiological solution. For mammalian 
cells this is approximately 1 S/m. For solutions with conductivities in excess of this value, the imbalance 
in osmotic pressure leads to shrinking of the cells and cell death in times of minutes or less. 
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