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Abstract

This note considers the problem of electromagnetic measure-
ment of position of an elementary volume in a shock-induced
medium flow. The case of one coordinate longitudinal to the
flow is treated giving a one-dimensional problem. A transmission-
line structure is used parallel to the flow and it is found that
it should be short circuited at the end which first receives the
shock; this minimizes the effects of conductivity and permittivity
of the ambient medium, and gives a basically inductive sensor.

The effects of transverse expansion (or contraction) of the medium
is minimized by various techniques, including symmetry. Sensor
designs involving self and mutual inductances are also considered,
and some of the possible RF signal discrimination techniques which
might be integrated with such a sensor are discussed. Various
design problems are pointed out as areas for future research.




I. Introduction

One of the important variables in a shock wave is the posi-
tion of some elementary portion of the material medium as a func-
tion of time. This 'particle position'" is in general not simply
related to other variables such as pressure (or more generally
stress), not only because of the spatially distributed nature of
the shock environment, but especially due to the nonlinear nature
of the shock environment at high transient pressures. As the
position (in general a three vector) of the elementary sample of
mass (the Eulerian coordinates) moves, one can also interpret this
phenomenon in terms of particle velocity. However, one should be
careful to distinguish between first, the position of a sample of
the medium as a function of time, and second, the velocity of the
medium as a function of time at a fixed position in some station-
ary rest frame (usually stationary with respect to the initial
conditions of the medium). This note is concerned with measuring
the position in the first sense in that something which moves with
the medium is tracked by electrical means. The derivative of this
type of quantity with respect to time is also a velocity, but the

velocity of a moving elementary mass (or '"particle') in the medium.

It is important that the measurement of interest be not
significantly perturbed by other medium parameters, particularly
by those parameters which may be also changing in the shock envi-
ronment. To tﬁe extent that these other parameters are uncertain,
then the results of the measurement are correspondingly uncertain.
In this note the technique of concern electrically locates the
position by scattering electromagnetic fields off a conducting
object moving with the medium. Since in this technique the sen-
sor consists primarily of the surrounding medium and this medium
transmits the electromagnetic fields (incident plus scattered) it

is important that the electrical properties of the medium (includ-

ing changes under high-pressure conditions) do not significantly
affect the sensor performance. Basically this requires that the
sensor be insensitive to the electrical parameters of the medium




(permittivity € and conductivity o), but can use the magnetic
properties of the medium (permeability u) since we assume

Moo (permeability of free space) (1L.1)

even under the high pressure conditions. In general we allow

T = E?;,t) (dyadic permittivity)
| | (1.2)
§*='E?;,t) (dyadic conductivity)

i.e., dyadic functions of space T = (x,y,z) and time t for the
electrical conditions.

Another requirement concerns the conductors and other
materials (other than the ambient medium itself) that are used
to construct the sensor. These should be of sufficiently small
mass and volume so as not to disturb the flow of the ambient
medium in the shock conditions.

This note addresses some of the design techniques for
transmission-line structures operated in self-inductance and
mutual-inductance configurations for measuring the particle posi-
tion (or corresponding velocity) in an ambient medium of suffi-
cient density. Beyond these considerations there are many
detailed design questions concerning materials, fabrication,
associated electronic eqﬁipment, etc. This note attempts to
discuss some of the basic physical techniques involved and the
associated design implications.




II. Transmission-Line Structure in Electromagnetically Uniform

Ambient Medium <:)
Consider schematically a. transmission line of length &(t)

which|varies slowly as a function of t. (See fig. 2.1.) Changes

are associated with the deformation of the medium for which the

associated shock velocity (velocities) vy are small compared to

the speed of light in vacuum c or in the medium V. The transmis-

sion line has a characterisfic‘impedance %c where

ZC = Zc(z,s) = fg(z) Z(z,s)

fg(z) dimensionless geometrical factor

z = coordinate along transmission line

. ~ 1/2
7(z,s) = lf(z,s) + se(z,sﬂ
SH,

= wave impedance of ambient medium
§(z,s) = conductivity of ambient medium (assumed a scalar) (:)
g€(z,s) = permittivity of ambient medium (assumed a scalar)

- -7

My 41 x 10 H/m

permeability of free space
= permeability of ambient medium (2.1)

In another form this is

1/2
~ !
G'(z,s) + sC'(z,s)
L'(z) = uofg(z) = jinductance per unit length
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Figure 2.1. Transmission Line with Axis Parallel to
Shock Propagation in Ambient Medium
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C'(z,s) = 7éza§%'5 capacitance per unit length
G'(z,s) iézz;? = conductance per unit length (2.2)
g

In terms of these same parameters the propagation constant is

Note

Y(z,8) = [su (3(z,s) + s&(z,s)1"/2

Il

[SL'(2)(&'(z,s) + sC'(z,8))]%/2 (2.3)

that the electromagnetic properties of the medium that are

changed under the shock conditions can in general be a function

of both position z and complex frequency s; they may also be ,
functiions of time t because of the changes induced in the medium,
but these changes are assumed slow compared to times required for

the electromagnetic processes to achieve a steady state. Where

required, the electromagnetic influence of these changes in the
ambient medium can be introduced as perturbations.

Here the complex frequency or two-sided-Laplace-transform

variable is

s =0 + jw (2.4)

where s = ju is used for CW considerations with the usual fre-

quend

Note
line
tild
Lapl

ry given by
= W
t =97 (2.5)

also the termination impedance 2T(s) for our transmission
and the desired quantity, the input impedance Zin(s)' A

e ~ above a quantity is used to indicate the two-sided

ace transform as

Ht

f(s) f £(t)e St at




Q +jeo . |

f(t) = E%T J © f(s)eSt ds (2.8)
J o ke

o J

with QO in the strip of convergence.

Note that the wave impedance and propagation constant of
the medium can be combined to give

Y(z,s) Z(z,s)

= Suo
~ (2.7)
%LELEl = §(z,8) + s€(z,s)
Z(z,s)
and similarly using the characteristic impedance
Y(z,8) Z,(z,s) = sL'(2)
. (2.8)
fLQEﬁiL = é'(z,s) + sa’(z,s)
z.(z,s)

]

'hese relations show that a certain form of combination of the
propagation constant and wave impedance or characteristic impe-

lance is independent of the conductivity and permittivity of the
medium.

o

Let us first assume that the electromagnetic parameters are
not functions of position z along the direction of shock propaga-
tion. The reflection coefficient (for voltage) at z = -2 is

. Zo(s) - Z,(s)
Tp(s) = =& c (2.9)
Zn(s) + Z,(s)

giving an input impedance at =z

i
o
o
0]

. . 14+ fT(s) e~2Y ()2
Zin(s) = ZO(S) (2.10)
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is expression stands one would expect the input impedance

pend on & and &€ through Yy and Z. TFor & comparable to or
compared to radian wavelengths (|§l] >> 1) this dependence
deed the case because the termination and medium character-

s are combined in a complicated way. Time-domain considera-
indicate that for early times or high frequencies a causal
ction coefficient fT cannot cancel the properties (also

1) of the ambient medium as contained in the delay associated

the propagation constant ¥.

Consider the case then that the frequency is sufficiently

small such that ]§2| << 1. Substituting from (2.9) in (2.10),

reari
serie

N
~
74

. S
in

ranging terms, and expanding the exponentials in a power
>s about Y& = 0 gives

2T(s)_§§(s)2 + e‘§(s){] + éc(s)[;§(s)2 - e—§(s){]

zT(S) ;?(S)Q _ e-;(s)f:l + QC(S)EBY(S)Q, + e—y(s)jz]

Uz
~
]
N2
~
0]
~

Zrs)[2 + ()12 + oGm0t

+ 3 (o) [27()0 + 2En® + o(GmHn®)]
Zo() V()L + 3(H(H)H% + o)D) ]]

]
N
~

n
~

s o[z + Gom? + oGt

ins) 2 + G2 + o(G()0h)]

+sniefz + 23?2 + oG]
Z(s)[G () + sCUSYL[2 + 3(V(s)0? + 0((V(s))*]]

v 2+ Georn? + o(Gs)nd
(2.11)




From this result note that for |y(s)&| << 1 the resulting
denominatorlfunction is dependent on é'(s) + sé'(s) to zeroeth
order for éonstant iT(s) # 0 as s > 0. Letting é'(s) be a con-
stant (or bounded by a constant) as s - 0 then ZT(S) > 0as s >0
will remove this dependence on G' (and C') and hence make the
input impedance independent of G(s) and €(s) to zeroeth order for
low frequencies. Note that zT(s) could be an inductance as sLT
to meet this constraint. A short circuit is a very small induc-

tance approximately and so we set

ZT(s) =0 (2.12)
giving
~ 2 ~ 4
5 o 1+ 5(7(s))? + o((V(Hn)h)
.. (s) = sL
1.~ ~ 4
m 1+ 2(7(s)n)? + o((3(s)n)h)
L = L'? = transmission-line inductance (2.13)

This says that a shorted transmission line (with lossless con-
ductors) placed in the ambient medium and electrically exposed

to the medium has an inductive impedance at low frequencies, this
low-frequency impedance being independent of both the conductivity
and permittivity of the medium.

Exploring the implications of (2.13) further the numerator

and denominator series expansions are combined as

2,5(5) = sL[1 - 3N + o((F())®)]
= SL[1 - § sug(8(s) + sE(s))L + O((T(s)0) )]
= sL|1 - 2 L@@ (o)1 + ST (s)8) + 0((§(s)z)4)]
L (2.14)




——

This

gives a correction term indicating how much the conductivity

and permittivity can change the input impedance. Rewriting (2.14)

as

N2

(s)

in

sL[l + B(s) + 0((?(s>z)4>:]

suozfg[§ + A(s) + 0((§(s)z)4{] (2.15)

~

the first order error A is

wik Wl

A(s) suoz(s(s) + s8(s))2

[
|

SL(G'(s)2 + sC'(s)2) - (2.16)

One criterion for an accurate measurement is then that

|A] << 1. Since at low frequencies A(s) » 0 as s » O this cri-

terion is consistent with our prior considerations which argued

toward a low-frequency measurement. Now we have some estimate

of "how low is low." As an example one might let

S/m

(2.17)

-10

e = 10e_ = .885 x 10 F/m

corresponding to not atypical soil or concrete (neglecting fre-

quency dependence). Then choosing frequencies with

we h

s = jw
(2.18)
2t

€
]

ave some examples as

10
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jwe = j.56 x 1073 S/m
o =102 S/m
lo + juwe| = 1072 S/m
|jwuo| * 7.9 Q/m
|B(s)| = 5(7.9)(107%) 22 = 2.6 x 1072 22 (2.19)
and ‘
o f = 10 MHz
jwe = .56 x 1072 S/m
o = 1072
lo + jwe| = 1.2 x 1072 S/m
[jwuol = 79 Q/m
|(s)| = 2(79)(1.2 x 1072) 2% = .32 22 | (2.20)

with &, of course, in meters. For 1 MHz with 2 = 1 m the effect
0f conductivity and permittivity is quite small. For 10 MHz one
should keep £ somewhat smaller, say 30 cm, for comparably small

errors.

Under high-pressure shock conditions the medium may have
somewhat different conductivity. Increased conductivity lowers
the operating frequency f, the length 2, or both. It is important
to know or at least bound the conductivity of the medium under the
applicable shock conditions, but such is beyond the scope of this
note and perhaps requires some special experiments. In any event

sufficiently small f and % can make IE| small compared to one.

11




Im(Z

An interesting application of (2.15) is contained in

(8)) (i.e., the imaginery part of Z(s)) which is in principle

measurable. In a measurement of Zin(s) consider, for s = jw, the
result
arg(Z;,(3)) = arg(ol) + arg[l + B(3o) + 0((T(IND)]
oy ~ . 4
- I+ arctan|—ImAGW) * (G
1 + Re(A(jw)) + O((vy(jw)2)™)
=T L Zcs
- P + (‘3(3(&))
§(3 ) = Im(A(3w))
o1 s o
= - 3 Im|JuL(G' (jw) + juC'(jw)
for |A(jw)| + O (2.21)
For ¢ real and € real
X/ 1 %
S(jw) = - 3 wLG'(jw)
_ 1 ~ s
= - 5 o) (EGw)L) (2.22)

This
meas
phas
tion
of t
meas
even
ther

ing

result indicates that, while o must be small to have a valid
urement, a measurement of the input impedance which includes

- can have a self-checking characteristic in that the devia-

of the phase from'ﬂ/z is an indication of the perturbation

he measurement by the conductivity of fhe ambient medium. By
urement at more than one frequency in the same sensor one may
determine how valid is the measurement at the lowest freguency,
eby giving the experiment another self-checking property.

The reader may note that the assumption of perfectly conduct-
transmission-line conductors (including shorted termination)

12
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is not exact in reality. In some cases the conductivity of cer-
tain metals may not be sufficiently large. To account for this
one may introduce a longitudinal impedance per unit length 4
ii(z,s) associated with the transmission-line conductors; this
adds to sL'(z) in the per-unit-length model of the transmission
line. Neglecting skin depth one might think of this extra term
as a resistance per unit length R'(z) giving a resistance R
around the conductor path, as seen at the transmission-line port
where %in(s) is measured, as |

2

R =Ry + [ R'(z) dz (2.23)
(o]

where, for R' assumed independent of z,
R = RT + R'% (2.24)

Here RT is the corresponding assumed resistive impedance of the
""'shorted'" termination.

If the conductivity o of the ambient medium gets too large,
then R can affect the experiment, even though R be small, since
some significant part of the current which ideally flows in the
termination now flows through the ambient medium. Basically the
requirement is

R << [|é'(s) + sC'(s)] 2] (2.25)

or more generally

|Zp(s) + JR Z;(z,s) dz| << [1(”3'(s) + sé'(s)]z] ! (2.26)
o

This constraint says that & should not be too large and/or the

cross-section dimenéions of the conductors (and their conductivi-

ties) should not be too small. Note that the conductivities of

the transmission-line conductors may be also affected under high-

pressure shock conditions.

13




A more accurate version of the conductor-conductivity effects

can be obtained by noting that the transmission-line model can be

modified to include Zk(z,s) in thevlongltudlnal impedance per unit

length as
51 (z,s) = sL'(z) + Z)(z,s)
¥1(z,s) = sC'(z,s) + G'(z,s)
(2.27)
S(z,s) = [B'(z,8) ¥ (2,912
71 ( .Z 1/2
1]
ZC(Z)S) = % Z,S
Y'(z,8)
In this form Z'(z s) enters as a direct correction to sL (z), such

as fo

imped

sL'

(

und in (2.11), again assuming YZ small. For an inductive
ance to be dominant, then Zi must also be small compared to

even during the high-pressure shock conditions).

14

O

T 1



III. Longitudinal Variation of Conductivity and Dielectric
Constant in Ambient Medium
With the transmission-line conductors assumed approximately
arallel to the direction of flow of the medium, and assumed to
be flowing with the medium, there may be conductivity and permit-

b
b
tivity variations along the transmission line. Figure 3.1 shows
the case of a transmission-line with short-circuit termination
and two regions with assumed different conductivities (and per-
h

aps different permittivities).

The results of the previous section can be used to calculate
the input impedance in two steps. Consider first the impedance
at the shock front which is used to approximately distinguish the

two regions. From (2.15) we write

> 5 ~ 4

Zy(s) = sLy[1 + By(s) + O((T4()2)") |
(3.1)

Ly = L'y = upfty
where corresponding to (2.16) we have

~ 1 " o

‘Al(s) = -3 suoll(ol(s) + sel(s)) 21 |
(3.2)

1 ~ ~
= -3 sLl(Gl(s)SL1 + sCl(s)ll)

For these expressions to be useful we assume that !Eil <<1.
However, since 21 < %, then we can allow 81 to be somewhat higher
than the unperturbed conductivity 82~(with similar comments 5
applying to the permittivity) since Al is proportional to 6121
for fixed frequency. From this one can conclude that for large
31 there still exists some small Ql and therefore small time
interval past shock passage of the shorted termination for which

~

Zl is approximately purely inductive. In some cases this time
interval might be too small to be of interest if 61 is too large;
the operating frequency constrains minimum times of interest. Of

course DC operation is also possible, but that is another subject.

15
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Figure 3.1. Two Parts of Transmission Line with
Different Conductivities and Permittivities
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Carrying the analysis further the impedance él can be con-

sidered a termination of the second part of the transmission line

of length 5. From (2.11) and common L' for both regions we can

write

+ ¢ T ot 1

Z1(3)[2 + ()17 + 0((p()2)")]

+ sL'JLz[:Z + 5(Tg(8)2)? + o<(§2<s>z2>4>J

Z1()[By(s) + sC3(s)]25[2 + 5(T(8)29)7 + O((Ty(9)2))

in(s) =

2+ Gaean? + oG]

(3.3)
Suppose now that we assume (noting %2 %)
[vo(s)2] << 1 |
, ~ (3.4)
~ ~ 2
|suo[§2(s) + sez(s{]] 29 << 1
and (noting 21 < )
Iil(S)Léé(S) + séé(s):]u = |sL1|'éé(S) + Séé(s)]ﬂ
= lsuozlE}é(s) + sgé(s):lﬂl << 1 (3.5)

he first restriction requires 52 and 52 to be sufficiently small
hat the length of line be electrically small. Combined with the
revious restrictions concerning small 21(5) the second restric-

ion follows. Then neglecting yzlz terms as well as the Zl(s)(Gé
sCé)%z term we have

17




N?

in(8) = Zy(s) + sL't,
= sL'zl[} + hy(s) + 0((§1(s)21)4i] + sL'2,
= sL'% + sL'f [ﬁl(s) + 0((?1(s)21)4{]
= sL'L + sL'zlzl(s)

= sL'R,[l + T 1(s):l

= su, Lf [} + —l A (s{} (3.6)

so that our relative error is Al(s) (as in (3 2)) reduced by the

ratio 1/2. However the error relative to Z (s) is just Al and

this
with
2.

may be more meaningful since the length change associated

the motion of the medium is more closely related to kl than

18




Iy. Implications of Transverse Flow of Ambient Medium

Up till now we have considered the effects of changes in

rameters as a function of the longitudinal coordinate z=. How-

er, the medium can flow in transverse directions as well. 1In
expanding flow there is a dilation or enlargement of the. trans-
rse dimensions of some portion of the ambient medium, and hence
the transmission-line transverse dimensions as well. In cases

contracting flow (as in a nozzle or an implosion) there is a

2 0 0O 0 4 » 0T

rresponding decrease of the transmission-line cross-section
mensions. ‘

Figure 4.1 shows two transmission-line cross sections as

0}

amples. Note that in each case the conductors are thin.shells
with ambient medium on both sides of the highly conducting sheets
that the sensor flows with the medium.

As a special case let us assume that the expansion (or con-
action) of the medium in the x and y directions is the same.

Stated another way, if x - x' and y - y' under the medium flow
en we require »

Xy for all (x,y) ' (4.1)
X ¥

nce we are only concerned with the local behavior of the medium
ear the transmission line) then we choose the origin for the
oss-section coordinates (x,y) = (0,0) somewhere near the trans-
ssion line, typically at the center of the cross section if such
definable by two (or more) symmetry planes through such a cen-
r, or by a symmetry axis.

+ = 85 0 ~ W

For the case of isotropic transverse expansion (or contrac-
tion) our problem simplifies considerably. Specifically the
dimensionless geometrical factor fg of the transmission-line
structure remains unchanged. This implies that the inductance

per unit length L' remains unchanged. Summarizing, then we have

19




*-— E, 89 UO

‘ - (same in three regions)

X

A. Two Identical Tubes

\\\\\\\ :. 5,u0

(same in three regions)

Q}

B. Circular Coaxial Cylindrical Conductors

Figure 4.1. Transmission-Line Cross Sections
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Q

fg independent of =z

; (4.2)
LI :

L Uofg independent of =z

This result is elementary, being based on scaling properties of
electromagnetic. problems in two dimensions; the fundamentai fg
term is always observed to be a function of only dimensionless
ratios of the cross-section chafacteristic dimensions. This
applies to both examples in‘figure 4.1; the two tubes have fg a
function of only a/h, and the coax has fg only a function of

rl/ro; since such ratios are unchanged, then fg is unéhanged.

- For the important case of the coax we have

f:.l-_gcnf.O_-_-_l_g,nfi". , | l(43)
g 27 ry 2m ri ‘ .

his is perhaps the simplest case, but also a most importaﬁt case
or our consideration, due to its high symmetry as well as its
lectromagnetic shielding properties. Note here that r (or ré)

. o
is the inner radius of the outer conductor, while ry (or ri) is

T

f

e

i

the outer radius of the inner conductor. The conductors are
assumed thin so as not to interfere with the flow of the ambient
medium, but not so thin as to introduce a significant longitudinal
impedance (as compared to some fraction of sL) associated with the
C

onductors.

Relaxing somewhat our assumptions concerning the flow of the
ambient medium transverse to the z axis, let it no longer be iso-
tropic but still somewhat restricted. Consider unit vectors

orresponding to the unperturbed coordinates (x,y,z) (Eulerian

position) with relations
i x1I =1
x 7y Z
I x1 =1
y Z X

21




(4.4)
; = XTX + yiy + 21z

giving a right-handed cartesian coordinate system with orthogonal
unit vectors. For the perturbed coordinates (x',y',2') corres-
ponding to the changed Eulerian position of the same incremental
part| of the medium we have

T o= x'Tx, + y'iy, + z'IZ, (4.5)

Let us assume there exists a choice of our original coordinates
such| that (at least locally)

i,=1 (4.6)

i.e.|, the coordinate directions are unchanged, and hence still
orthogonal. This assumption can be relaxed somewhat if we adopt
a differential-geometry approach [1] and allow (x',y',z') to be
an orthogonal curvilinear coordinate system. In this case we
would have (assuming right-handed (x',y',z'))

ey <1, =16
e x1,@)=1.,G (4.7)
LGy x1,.GH =1,

i.e.|, the coordinates are locally orthogonal but each unit vector
(direction of increasing coordinate) is a function of the coordin-
ates 1 (and hence of ?). Note in particular that this differential-
geometry approach also allows rotations while preserving local
coordinate orthogonality.

22
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Since uniform expansion in both x and y directions (while

remaining orthogonal to z, the sensor longitudinal coordinate)’
leaves the transmission-line geometrical factor fg unchanged, then
let us consider the case that the medium expansion is different

these two coordinate directions. Let the x' and y' coordinates

(and hence x and y) be chosen to diagonalize this medium expansion

a

d thereby remain orthogonal under expansion in the above sense.

Consider an expansion ratio (for small (x',yf))

1

- X ‘
g = %7 P ‘ (4.8)

or in difference (incremental) form

= Ay’ Ax .
£ =3y i (4.9) .

where AT' is the difference in two positions (nearby) in the medium

under expansion. Let

A

go = expansion ratio before expansion
=1 | (4.10)
imilarly let the transmission-line geometrical factor be
fg = geometrical factor before expansion
o
, ; (4.11)
fg = geometrical factor during expansion
ppropriate changes are
pEEE-~E TE-1
(4.12)
Af = f - f '
g g €o
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To see some of the effects of this anisotropic expansion

consider a simple example in figure 4.2A consisting of two plates
of width 2a and spacing 2b with a >> b. The geometrical factor is

Henc

more

Thus
in §

vers

b .
2 before expansion

b . s
ar during expansion

a' proportional to x'

b' proportional to y'
(4.13)

e

1 - va x - g 2
! y x'a a

o

e if x' expands more than y', then fg decreases; if y' expands

than x', then fg increases. For this case then we have
b b

t,2e o, £, =2
g a 8o a

~ b
Af = (8 - 1) 3
Af
f__g:g-]_ (4.14)
€

the relative change of the geometrical factor is first order
- 1 for the case of wide, closely-spaced parallel plates.

To reduce this problem of the effects of anisotropic trans-
e expansion on fg‘one may invoke symmetry. If the transmission-

line cross section is the same with respect to both x and y axes
then x' expanding more than y' must produce the same effect on fg
as y' expanding more than x'. 1In both cases fg will change in the
same way because the symmetry makes the geometrical changes have
the 'same effect. Quantitatively then for small A

= even function of AE (4.15)

] >
w5
o]
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conductor 2.
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conductor O

Circular Coax with Four Intermediate Symmetrical Tubes

igure 4.2. Transmission-Line Cross Sections Related to Transverse

Anisotropic Medium Flow
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If Af is an analytic function of Af, then

For
thi
to

resi

sio]

witl

Thi
in

thi
cro
ing

g
Af 9
5 = 0((AE)%)
gO
= o((g - 1)) (4.16)

small AZ (i.e., small anisotropy of transverse medium flow)

s makes changes in fg small (by at least one order) compared

cases without this special symmetry, e.g., the parallel-plate
ult in (4.14).

An alternate approach to the influence of symmetry on expan-
h ratio uses a logarithmic expansion ratio as '

T = logarithmic expansion ratio
= n(g)
= Ay' Ax | _ Ay’ | _ Ax'
n [Ay "L n Ay n A% (4.17)
h
Lo £ logarithmic expansion ratio before expansion

i

0 ' (4.18)

5 form clearly illustrates the symmetry with respect to changes

x' and y' as a sign reversal for changes in . In terms of

5 logarithmic expansion ratio and for the transmission-line
Ss section being the same with respect to both x and y (includ-
electrical connections) then we have

= even function of ¢ (4.19)

H:Lq(>
n ]
o)
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which is valid even for large |;|. This case then has for small

(assuming fg an analytic function of )
A
—8 = 0(z%) o (4.20)
g ,

The type of symmetry discussed here is a rotation symmetry

in two dimensions (the (x,y) plane). Having the same geometry

with respect to both x and y axes (for all choices of orthogonal

and y axes) means invariance with respect to a rotation by m/2.

This in turn implies a set of rotations: w/2, tmw, *3w/2, and O
-or *2m (identity). This defines a finite uniaxial rotation group
in two dimensions labelled C4 where Cn is a uniaxial symmetry
group (a cyclic group) related to a single n-fold rotation axis
(rotation by 2w/n) [2]. Note that in addition to the geometrical

symmetry of the conductors electrical symmetry is also required in

the currents{ potentials, etc.; conductors in symmetrical positions

must be driven and loaded with the same symmetry. Of course higher

order uniaxial groups such as C4m (m=2,3,4,...) contain C4 as a
commutative subgroup and are therefore consistent with C4 symmetry.

In the 1imit we have the two-dimensional pure-rotation group C,

[21.

The constraint of C4 symmetry still allows a wide variety of

cross-section shapes. Some of these, such as portions of spirals,

may not be interesting for our present purposes. Typically we will
include a plane of symmetry through the z axis. However the C4
symmetry then implies there must be another plane of symmetry

through the z axis and perpendicular to the first symmetry plane

(rotation by w/2). Combining reflection (symmetry planes) and

rotations by w/2 one obtains further symmetries including inversion

and the location of two more symmetry planes through the z axis at

a
t
f

ngles of m/4 with respect to the first symmetry plane. Note that
his is the same symmetry as possessed by a square (and other
igures) in the (x,y) plane. The corresponding symmetry group is
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label
order
a sub

is po

chang
of a
This

d C4 v and is of order 8 (8 group elements) [2]. Higher
?

symmetries such as C4m,v (m = 2,3,4,...) contain C4,V as

roup. In the limit as m + « we have C_ V" This symmetry

)

sessed by the coaxial geometry of figure 4.1B.

Another example of this C4 v symmetry is illustrated in
4.2B. Here the coaxial cylinders of radius ry and r, cer-

meet the above symmetry constraints; a circular coax such

s part (or as in figure 4.1B) has even higher order symmetry.

ition four tubes (hollow wires filled with ambient medium
s) each of radius a are shown with centers on radius ry with
9 — 8 < Ty + a < Ty and with even angular spacing of w/2.
ives a case of four symmetry planes as discussed above.
hat the four tubes at Ty must have the same transmission-
urrents (including direction with respect to Tz,) and the
otentials for this symmetry to hold. This is obtained by
ting the four tubes together through equal impedances to a
terminal at a common z in each instance. Note that this
ry is suitable for a mutual-inductance type of sensor since
are three accessible terminals (two ports) at z = 0; at
all three sets of conductors would be shorted together with
conducting disk (as in figure 3.1). Note also triaxial
ry (three coaxial circular cylinders) also meets the above
ry requirement and could be useful for a mutual inductance
In addition an outer conducting cylinder is useful as a
to keep out environmental electromagnetic noise (such as
MP or from other instrumentation).

Other techniques can be also used to make fg insensitive to
s in the ratio of cross-section dimensions. As in the case
oax fg depends on a logarithm of the ratio of dimensions.
bservation applies to any case of a thin strip, wire, etc.

spaced a distance large compared to the conductor cross—section

dimensions from another conductor. If fg is of the form

28
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H H ® ® H »

- a
£, = A (P

4.21
% s 1 ( )

hen small relative changes in a/b give even smaller dhanges in
as

g
= 2 a
fg + Afg = A Rn(b + A(b))
- a D a2
= A{zn(b) + xn[l + 3 A(b)]}
~ a b a
= A{Qn(b) + Py A(b)}
b a
Af = A(E)
fg[l + TE] = A zn(%) 1 +‘-"l—*§—
g in(g)
~ A kn(%)il + 1 [-A—a- - -‘E‘P-]} (4.22)
a a b v
In(g)
o that the relafive change in fg is reduced by an additional
actor of &n(a/b). This result illustrates that the logarithm is
slowly varying function of its argument. The introduction of
ppropriate logarithmic factors in the design of-fg can then make
g less sensitive to the transverse medium flow. This can be used
n conjunction with the symmetry discussed above.
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Extension to Mutual Inductances

It is important to note that while our discussion has cen-

tered on the simpler case of a single inductance which varies

under the shock conditions, the same general results apply for

mutual inductances (or more general mutual impedances) between

conductors in transmission-line geometries as well. Consider a

multiconductor transmission line as in figure 5.1; this example

has
ence

two conductors plus a reference conductor for voltage refer-
(zero volts). As usual, assume the medium flow is parallel

to the transmission line (z axis). Let the ambient medium have
electromagnetic parameters that are independent of z and are
assumed linear and scalar; as usual the permeability is assumed

Hy

Take

Consider an N-conductor-plus-reference transmission line.
an incremental length Az which has a uniform permittivity,

conductivity, and permeability. This is the well-known degener-

ate case of (perfect) transmission-line conductors in a uniform

medium for which the N transmission-line modes of propagation are
all TEM and Ehe propagation matrix (?n,m(s)) has N identical eigen-
values, all v(s), as in (2.3). Next let the ratios of cross-section
dimensions be unchanged under medium expansion, or by use of sym-

metry as discussed in the previous section let the effects of such

changes be reduced to some acceptably small level. Then we have

N propagating modes all with the same propagation constant

and

1/2

Y(z,8) = [su (3(z,s) + s&(z,8))] (5.1)

a characteristic-impedance matrix

(éc (z,s)) = Z(z,s)(fg )

n,m n,m
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Figure 5.1. Multiconductor Transmission Line with Axis Parallel

to Flow in Ambient Medium: Case of Two Conductors
Plus Reference ‘
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1/2

~ ~ + =
Z(z,s) = [O(Z’S)S SE(Z’S)] (5.2)
u
o
(fg ) = dimensionless geometrical-factor matrix
n,m

The input impedance then has the same results as in sections II

and I

IT for shorted termination (now all conductors being shorted

together at z = -%) except that fg is replaced by (fgn m). See,
for example (2.15) and (3.6). Here we have ‘

where
more
of th
facto

ing c
it al
ducti
tubes
ducto
the e

corre
tance
open
port
mutua

(Zinn,m(S)) TR OICHED (5.3)

2ino(s) takes the forms developed in sections II or III or
accurate forms that may be developed for the input impedance
e type of transmission line we are considering (with fg '
red out).

Considering the example in figure 4.2B let the outer conduct-
ircular cylinder of radius r, be the reference conductor since
so serves as an electromagnetic shield. Let the inner con-
ng cylinder of radius ry be conductor 1. And let the four
of radius a and centered on a radius Ty be collectively con-
r 2 having a common voltage and equal currents. Neglecting

ffects of the small tube radius a in appropriate cases we have
1 o[l
fgl,l ® = Rn(rl) (5.3)

sponding to port 1 input impedance 2in1’1(s), port 1 induc-
L1,1 (self inductance) etc., obtained by leaving port 2
circuited. Leaving port 2 again open circuited, but driving
1 with a current and measure the voltage at port 2 gives a

1 impedance characterized by a geometrical factor
r
1 o]
f = &= n|— (5.4)
83,1 27 (rz)
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with
f = f (5.5)

by reciprocity. This gives a mutual inductance

L, ; = L = u of (5.6)
2,1 1,2 o"'gy 4

and a corresponding mutual impedance Zlnz 1(s) or Z1n1 2(s)
Between these two independent values of fg .m one can make a
mutual-inductance type of sensor by dr1v1ng one port and measur-
ing at the other port. One may also compute fgz ,27 but this is

more complicated and involves a logarithmic functlon of the tube
radius a.
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VI.

Measuring Indﬁctance Change

Having a sensor with an inductance or mutual-inductance

proportional to 2(t) with

where

L(t) - lo = -(z'(t) - =z) (6.1)

10 is the value of the length before medium flow and z'(t)

is the| position of the short at the end of the transmission line

(with

7z its unperturbed value), the problem is to measure an

appropriate Ln m(t). This applies only up to such time as the
medium flow reaches the input terminals of the transmission line.

There

are various approaches to the measurement of such

inductances.

tance

One technique would utilize the simple case of self induc-
as part of an LC oscillator with a (slowly) time-varying

frequency output

1

£(t) = 5= w(t) = -21; [L(t.)C]_; (6.2)

This might be directly recorded after transmission via cable, or
it might be first converted to an analog signal proportional to

f(t).

Other types of reactive networks can be combined with L(t)

to give a different dependence of f£f(t) on L(t); having f(t) then
L(t) is found through the designed relationship. Note that the
period of f(t), i.e., f(t)-l, and the response time of the oscil-

lator

to follow changes in L(t), should be small compared to times

of interest in following L(t).

Another technique would make L(t) part of a voltage divider

with a reference inductance Lr’ or more general impedance Zr(s).

Then with the loading cable from the sensor and the reference
impedance (including source impedance) the signal at the recorder

can be used to infer L(t) from the time varying voltage-divider

ratio

at the operating frequency f, again with f_l sufficiently
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all. A more sophisticated version of this would have L(t) as

e arm of a bridge so that the initial RF amplitude going away
the recorder was essentially zero compared to the source signal,
cept for some small offset; as L(t) decreased the RF signal to

e recorder would increase and could be amplitude discriminated.

One could also use a direct reflection technique with an RF
gnal transmitted down a cable to the sensor and reflected back
om the input port of the sensor. By having the source impedance
€ same as the cable characteristic impedance, one can terminate
e reflected wave at the source. Then by sampling the signal on
e cable one can determine the standing wave properties as a
nction of time to obtain both phase and amplitude of the reflec-
on as a function of time. Alternately one samples the reflected
gnal via a directional coupler. The magnitude as a function of
me is directly obtained. By comparing the sampled reflected
gnal with a sample of the source signal phase can also be
tained, or if one wishes real and imaginary parts of the complex
asor reflection can also be generated.

A related technique has the directional coupler effectively
part of the sensor. This is the mutual-inductance type of sen-
r, such as the examples in figures 4.2B and 5.1. For this kind
sensor a signal is driven into one port and detected from the
cond port. Note the common ground which connects to the cable
ields. The source signal may be»generated at the input port or

may be transported from some distance away via cable. 1In the

la

tter case particularly there may be some impedances at the input

port to make a constant current (CW) into the port, and/or minimize

re

flections back toward the source. The second port only has one

signal to contend with, namely the signal leaving the port, since
the other end of this cable is terminated in its characteristic

impedance. At the recording instrumentation the signal from the

se
ob

cond port can be compared to a sample of the source signal to
tain magnitude and phase (or equivalent) information concerning

the mutual inductance of the sensor (and hence 2(t)).

35




refle

In various of these schemes it is the phase ¢(t) of the
cted or transmitted signal that most directly relates to the

O

inductjance (self or mutual) or its change. A phase detector then

basic
linea
tiona
is di

ally gives 2(t) with various schemes having a more or less
r dependence of 2(t) on ¢(t). If an analog signal propor-
1 to ¢(t) is differentiated with respect to time then 2(t)
fferentiated with respect to time to some approximation.

Before the medium flow reaches the sensor connectors di(t)/dt is
the velocity of the flow at the shorted end. This is sometimes

refer

to a

red to as the particle velocity.

Note that if ¢(t) is a linear function of t this corresponds
frequency shift of amount d¢(t)/dt (in radian units). Thus

we can interpret

L = —pu(t) = -2maf(t) | (6.3)

giving a frequency shift. Thus for velocity purposes (assuming

phase

linear in 2(t)) we can interpret particle velocity as a fre-

quency shift, similar to a Doppler shift. In such a case FM dis- ( )
crimination of the reflected or transmitted signal can be used.

Note

for this purpose phase is a positive increase along the

direction of propagation in the cables and a decreasing 2(t)

decre

ses phase in the reflection type of sensor and increases

the frequency of the reflected signal.

at a
may h
III,
permi
them
one cC
give

The experimenter is not constrained to operate the sensor
ingle frequency. By operating at several frequencies one
ve crosschecks on the results. As noted in sections II and
if the operating frequency is too high the conductivity and
tivity of the medium affect the sensor impedances, making
ther than pure inductances. By having several frequencies
n observe from the experimental records which frequencies
alid results at various times. In addition information is

gained about the transient medium conductivity and permittivity

under shock conditions. Even DC (zero frequency) excitation might
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be used to give a transient signal proportional to de(t)/dt as
another check. This multifrequency operation can be accomplished
by the use of several sensors (side by side) operated at differ-

ent frequencies, one sensor operated at several frequencies, or
some combination of these.
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- VII.

Summary

Having worked out some of the basic equations and design

concepts for measuring Eulerian position (one dimensional) in a

shocked flowing medium via transmission-line structures operated
in inductive configuration, there is still much detailed design
work| to be done.

Concerning some of the sensor basics some conclusions from

differential geometry, group theory (symmetry), and logarithmic
dependence on dimensions have been used to optimize the kind of
transmission-line cross section one would best use. Perhaps these

approaches can be carried further to obtain more design constraints.

In addition to thése, one can investigate the effects of small

changes in the cross-section boundaries by a perturbation theory

approach.

The conductivity and permittivity of the ambient medium are

of potential importance to this type of measurement. The use of

inductive techniques minimizes the dependence on the conductivity

and

permittivity, but for high frequencies, long sensors, and high

conductivity and/or permittivity these parameters become important.

The

conductivity and permittivity effectively limit the parameter

space in which this type of sensor may be used. It is therefore

important to have quantitative information on the conductivity and

permittivity of the ambient medium, including under high-pressure

shock conditions, and including as a function of frequency. For-

tunately the sensor can be made somewhat self checking in that

part of the sensor output can be used to record the presence (or

absence) of significant conductivity/permittivity effects, and

this can be done simultaneously at several frequencies.

The properties of the conductors used to make the sensor

need to be understood under the same conditions. These properties

are
amb
con
the

mechanical in that they must not perturb the flow of the
ient medium. They are also electrical in that sufficiently high
ductivity must be maintained. If any insulators are also used,

ir properties should be similarly understood.
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Associated with such sensors one needs appropriate precision
RF sources, networks, cables, discriminators, and recorders. Some

of [these items have been briefly touched on in this note. Optimum
designs are needed.

Note that some of the ways these inductive sensors can be
used involve passing a signal by or through the sensor. If the
source and signal are available to the experimenter just before
shot time, then one can determine at least some information about
the operating condition of the sensor and cabling at shot time,
when the sensor may be literally 'cast in concrete."

While this note has not explicitly considered the EMP coupl-
ing to the sensor, including Compton currents present in nuclear
source regions, there is much information on such phenomena.
Techniques similar to those used in EMP sensors involving low
atomic number and matched atomic number can be used [3]. oOf
course, high-quality shielding of the sensors, cabling, and instru-
mentation enclosures can be done to at least traditional EMP stan-
dards. Note that in a nuclear-source-region environment blast and
shock sensors such as these and EMP sensors will have to be inte-
grated in a common experimental layout if they are near each other.
This will involve integrated cable and shield topologies.
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